Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
On Gödel’s Incompleteness Theorem
dc.contributor.author | Pierce, David | |
dc.date.accessioned | 2025-10-08T13:30:05Z | |
dc.date.available | 2025-10-08T13:30:05Z | |
dc.date.issued | 2025 | en_US |
dc.identifier.citation | David Pierce, "On Gödel’s Incompleteness Theorem," Journal of Humanistic Mathematics, Volume 15 Issue 2 (July 2025), pages 186-221. DOI: 10.5642/jhummath.KSPX8939. Available at: https://scholarship.claremont.edu/jhm/vol15/iss2/9 | en_US |
dc.identifier.issn | 2159-8118 | |
dc.identifier.uri | https://doi.org/10.5642/jhummath.KSPX8939 | |
dc.identifier.uri | https://scholarship.claremont.edu/jhm/vol15/iss2/9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/10156 | |
dc.description.abstract | Godel's Incompleteness Theorem is about the logic of mathematics. It is that a certain mathematical structure is so rich that its theory cannot be completely axiomatized. This means there will always be true statements about the structure that cannot be proved as theorems from previously given axioms. To give meaning to this conclusion, we review some examples of mathematical theorems, and their proofs, in geometry, algebra, and logic; we also give an example of a structure that is so simple (while still being interesting) that its theory can be completely axiomatized. First we look at a couple of popular descriptions of Godel's Theorem; these can be misleading. We pass to Raymond Smullyan's interpretation of Godel's Theorem as a puzzle; then to an analogy with the incompleteness of an English guide to English style. Godel's argument relies on converting statements about numbers into numbers themselves; we note how to argue similarly by understanding geometrical statements as geometrical diagrams. Geometry is thus somehow incomplete; likewise, physics. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Claremont Center for the Mathematical Sciences | en_US |
dc.relation.ispartof | Journal of Humanistic Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | On Gödel’s Incompleteness Theorem | en_US |
dc.type | article | en_US |
dc.authorid | 0000-0002-8208-6308 | en_US |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.institutionauthor | Pierce, David | |
dc.identifier.doi | 10.5642/jhummath.KSPX8939 | en_US |
dc.identifier.volume | 15 | en_US |
dc.identifier.issue | 2 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorwosid | HVF-2346-2023 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.identifier.wos | WOS:001550644000008 | en_US |
Bu öğenin dosyaları:
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Ꮃeb of Science [1796]
Web of Science platform