Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara

Basit öğe kaydını göster

dc.contributor.authorOcak, Ayla
dc.contributor.authorBekdas, Gebrail
dc.contributor.authorNiğdeli, Sinan Melih
dc.contributor.authorIşıkdağ, Ümit
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2025-12-19T10:21:27Z
dc.date.available2025-12-19T10:21:27Z
dc.date.issued2025en_US
dc.identifier.issn2078-2489
dc.identifier.urihttps://hdl.handle.net/20.500.14124/10261
dc.description.abstractThe cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in structures. By repeating the optimization processes for multiple load scenarios, it is possible to create a data set that shows the optimum design section properties. However, this step means repeating the same processes to produce the optimum cross-sectional dimensions. Artificial intelligence technology offers a short-cut solution to this by providing the opportunity to train itself with previously generated optimum cross-sectional dimensions and infer new cross-sectional dimensions. By processing the data, the artificial neural network can generate models that predict the cross-section for a new structural element. In this study, an optimization process is applied to a simple tubular column and an I-section beam, and the results are compiled to create a data set that presents the optimum section dimensions as a class. The harmony search (HS) algorithm, which is a metaheuristic method, was used in optimization. An artificial neural network (ANN) was created to predict the cross-sectional dimensions of the sample structural elements. The neural architecture search (NAS) method, which incorporates many metaheuristic algorithms designed to search for the best artificial neural network architecture, was applied. In this method, the best values of various parameters of the neural network, such as activation function, number of layers, and neurons, are searched for in the model with a tool called HyperNetExplorer. Model metrics were calculated to evaluate the prediction success of the developed model. An effective neural network architecture for column and beam elements is obtained.en_US
dc.language.isoengen_US
dc.relation.ispartofInformationen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectHyperparameter optimizationen_US
dc.subjectNeural architecture searchen_US
dc.subjectHarmony search algorithmen_US
dc.titleSearching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensionsen_US
dc.typearticleen_US
dc.authorid0000-0002-2660-0106en_US
dc.departmentFakülteler, Mimarlık Fakültesi, Mimarlık Bölümüen_US
dc.institutionauthorIşıkdağ, Ümit
dc.identifier.doi10.3390/info16080660en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidA-3306-2012en_US
dc.identifier.wosWOS:001557671200001en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster