Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Fire Resistance Prediction in FRP-Strengthened Structural Elements: Application of Advanced Modeling and Data Augmentation Techniques
| dc.contributor.author | Işıkdağ, Ümit | |
| dc.contributor.author | Aydın, Yaren | |
| dc.contributor.author | Bekdaş, Gebrail | |
| dc.contributor.author | Çakıroğlu, Celal | |
| dc.contributor.author | Geem, Zong Woo | |
| dc.date.accessioned | 2025-12-19T12:07:57Z | |
| dc.date.available | 2025-12-19T12:07:57Z | |
| dc.date.issued | 2025 | en_US |
| dc.identifier.issn | 2227-9717 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14124/10272 | |
| dc.description.abstract | In order to ensure the earthquake safety of existing buildings, retrofitting applications come to the fore in terms of being fast and cost-effective. Among these applications, fiber-reinforced polymer (FRP) composites are widely preferred thanks to their advantages such as high strength, corrosion resistance, applicability without changing the cross-section and easy assembly. This study presents a data augmentation, modeling, and comparison-based approach to predict the fire resistance (FR) of FRP-strengthened reinforced concrete beams. The aim of this study was to explore the role of data augmentation in enhancing prediction accuracy and to find out which augmentation method provides the best prediction performance. The study utilizes an experimental dataset taken from the existing literature. The dataset contains inputs such as varying geometric dimensions and FRP-strengthening levels. Since the original dataset used in the study consisted of 49 rows, the data size was increased using augmentation methods to enhance accuracy in model training. In this study, Gaussian noise, Regression Mixup, SMOGN, Residual-based, Polynomial + Noise, PCA-based, Adversarial-like, Quantile-based, Feature Mixup, and Conditional Sampling data augmentation methods were applied to the original dataset. Using each of them, individual augmented datasets were generated. Each augmented dataset was firstly trained using eXtreme Gradient Boosting (XGBoost) with 10-fold cross-validation. After selecting the best-performing augmentation method (Adversarial-like) based on XGBoost results, the best-performing augmented dataset was later evaluated in HyperNetExplorer, a more advanced NAS tool that can find the best performing hyperparameter optimized ANN for the dataset. ANNs achieving R2 = 0.99, MSE = 22.6 on the holdout set were discovered in this stage. This whole process is unique for the FR prediction of structural elements in terms of the data augmentation and training pipeline introduced in this study. | en_US |
| dc.language.iso | eng | en_US |
| dc.relation.ispartof | Processes | en_US |
| dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
| dc.subject | ANN | en_US |
| dc.subject | Data augmentation | en_US |
| dc.subject | Fire resistance | en_US |
| dc.subject | XGBoost | en_US |
| dc.title | Fire Resistance Prediction in FRP-Strengthened Structural Elements: Application of Advanced Modeling and Data Augmentation Techniques | en_US |
| dc.type | article | en_US |
| dc.authorid | 0000-0002-2660-0106 | en_US |
| dc.department | Fakülteler, Mimarlık Fakültesi, Mimarlık Bölümü | en_US |
| dc.institutionauthor | Işıkdağ, Ümit | |
| dc.identifier.doi | 10.3390/pr13103053 | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.authorwosid | A-3306-2012 | en_US |
| dc.identifier.wos | WOS:001601588700001 | en_US |
Bu öğenin dosyaları:
| Dosyalar | Boyut | Biçim | Göster |
|---|---|---|---|
|
Bu öğe ile ilişkili dosya yok. |
|||
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Ꮃeb of Science [1832]
Web of Science platform














