Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Predicting the area moment of inertia of beam and column using machine learning and HyperNetExplorer
dc.contributor.author | Aydın, Yaren | |
dc.contributor.author | Niğdeli, Sinan Melih | |
dc.contributor.author | Roozbahan, Mostafa | |
dc.contributor.author | Bekdaş, Gebrail | |
dc.contributor.author | Işıkdağ, Ümit | |
dc.date.accessioned | 2025-06-13T07:29:53Z | |
dc.date.available | 2025-06-13T07:29:53Z | |
dc.date.issued | 2025 | en_US |
dc.identifier.citation | Aydın, Y., Nigdeli, S.M., Roozbahan, M. et al. Predicting the area moment of inertia of beam and column using machine learning and HyperNetExplorer. Neural Comput & Applic (2025). https://doi.org/10.1007/s00521-025-11323-1 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.uri | https://doi.org/10.1007/s00521-025-11323-1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/9766 | |
dc.description.abstract | Beams and columns are the most important elements of steel frame structures. Damage to the beam or column can lead the structure to serious hazards and cause collapse. In the structural engineering literature, it has been observed that there is not much work for area moment of inertia estimation of beam and column. The aim of this study was to predict the area moment of inertia of beam and column using HyperNetExplorer developed by the authors. This method aims to bring innovation by optimizing artificial neural networks (ANNs). In this study, a prediction study is performed using 306 collected data on beam and column area moment of inertia. Classical ML models (linear regression (LR), decision tree regression (DTR), K neighbors regression (KNN), polynomial regression (PR), random forest regression (RFR), gradient boosting regression (GBR), histogram gradient boosting regression (HGBR)) and NAS and HyperNetExplorer were applied to predict beam and column area moment of inertia. The prediction performances were compared using different performance metrics (coefficient of determination (R2) and mean squared error (MSE)) and HyperNetExplorer developed by the authors showed the highest performance (R2 = 0.98, MSE = 246.88). Furthermore, SHapley additive explanations (SHAP) were used to explain the effects of features in the prediction models and it was observed that the most effective features for model predictions were loading on beam and length. The results show that the proposed NAS base approach and the developed tool, HyperNetExplorer, provides better performance when compared with classical ML methods. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Neural Computing and Applications | en_US |
dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
dc.subject | Area moment of inertia | en_US |
dc.subject | HyperNetExplorer | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Regression | en_US |
dc.subject | Structural design | en_US |
dc.title | Predicting the area moment of inertia of beam and column using machine learning and HyperNetExplorer | en_US |
dc.type | article | en_US |
dc.authorid | 0000-0002-2660-0106 | en_US |
dc.department | Fakülteler, Mimarlık Fakültesi, Mimarlık Bölümü | en_US |
dc.institutionauthor | Işıkdağ, Ümit | |
dc.identifier.doi | 10.1007/s00521-025-11323-1 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorwosid | NBJ-5795-2025 | en_US |
dc.authorscopusid | 25223356600 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.identifier.scopus | 2-s2.0-105006899047 | en_US |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1577]
Scopus | Abstract and citation database