Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydın, Yaren
dc.contributor.authorNiğdeli, Sinan Melih
dc.contributor.authorRoozbahan, Mostafa
dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorIşıkdağ, Ümit
dc.date.accessioned2025-06-13T07:29:53Z
dc.date.available2025-06-13T07:29:53Z
dc.date.issued2025en_US
dc.identifier.citationAydın, Y., Nigdeli, S.M., Roozbahan, M. et al. Predicting the area moment of inertia of beam and column using machine learning and HyperNetExplorer. Neural Comput & Applic (2025). https://doi.org/10.1007/s00521-025-11323-1en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttps://doi.org/10.1007/s00521-025-11323-1
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9766
dc.description.abstractBeams and columns are the most important elements of steel frame structures. Damage to the beam or column can lead the structure to serious hazards and cause collapse. In the structural engineering literature, it has been observed that there is not much work for area moment of inertia estimation of beam and column. The aim of this study was to predict the area moment of inertia of beam and column using HyperNetExplorer developed by the authors. This method aims to bring innovation by optimizing artificial neural networks (ANNs). In this study, a prediction study is performed using 306 collected data on beam and column area moment of inertia. Classical ML models (linear regression (LR), decision tree regression (DTR), K neighbors regression (KNN), polynomial regression (PR), random forest regression (RFR), gradient boosting regression (GBR), histogram gradient boosting regression (HGBR)) and NAS and HyperNetExplorer were applied to predict beam and column area moment of inertia. The prediction performances were compared using different performance metrics (coefficient of determination (R2) and mean squared error (MSE)) and HyperNetExplorer developed by the authors showed the highest performance (R2 = 0.98, MSE = 246.88). Furthermore, SHapley additive explanations (SHAP) were used to explain the effects of features in the prediction models and it was observed that the most effective features for model predictions were loading on beam and length. The results show that the proposed NAS base approach and the developed tool, HyperNetExplorer, provides better performance when compared with classical ML methods. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2025.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectArea moment of inertiaen_US
dc.subjectHyperNetExploreren_US
dc.subjectMachine learningen_US
dc.subjectRegressionen_US
dc.subjectStructural designen_US
dc.titlePredicting the area moment of inertia of beam and column using machine learning and HyperNetExploreren_US
dc.typearticleen_US
dc.authorid0000-0002-2660-0106en_US
dc.departmentFakülteler, Mimarlık Fakültesi, Mimarlık Bölümüen_US
dc.institutionauthorIşıkdağ, Ümit
dc.identifier.doi10.1007/s00521-025-11323-1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidNBJ-5795-2025en_US
dc.authorscopusid25223356600en_US
dc.identifier.wosqualityQ1en_US
dc.identifier.scopus2-s2.0-105006899047en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1577]
    Scopus | Abstract and citation database

Basit öğe kaydını göster