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Abstract: In the design of reliable structures, the soil classification process is the first step, which
involves costly and time-consuming work including laboratory tests. Machine learning (ML), which
has wide use in many scientific fields, can be utilized for facilitating soil classification. This study
aims to provide a concrete example of the use of ML for soil classification. The dataset of the study
comprises 805 soil samples based on the soil drillings of the new Gayrettepe–Istanbul Airport metro
line construction. The dataset has both missing data and class imbalance. In the data preprocessing
stage, first, data imputation techniques were applied to deal with the missing data. Two different
imputation techniques were tested, and finally, the data were imputed with the KNN imputer. Later,
a balance was achieved with the synthetic minority oversampling technique (SMOTE). After the
preprocessing, a series of ML algorithms were tested with 10-fold cross-validation. Unlike the studies
conducted in previous research, new gradient-boosting methods such as XGBoost, LightGBM, and
CatBoost were tested, high classification accuracy rates of up to +90% were observed, and a significant
improvement in the accuracy of prediction (when compared with previous research) was achieved.

Keywords: soil; machine learning; classification; ensemble learning

1. Introduction

Soil classification is used to categorize soils with similar engineering properties based
on a shared set of properties or characteristics. The behavior of soil is unlike other engi-
neering materials such as steel or concrete due to its natural formation, geological history,
and particulate nature [1]. The determination of soil properties and the explanation of soil
behavior form the basis of geotechnical engineering. Soil classification usually depends on
certain soil properties, such as grain-size distribution, liquid limit, and plasticity index [2].
Soil classification is important to classify soils with similar properties and to facilitate the
dissociation of soils. With soil classification, soil is grouped according to similar properties
that it shows when it is exposed to load [3]. Soil classification is a must-do before a founda-
tion design. It is very important to define and classify the soil for the research and design
stages of geotechnical engineering processes. Thus, a soil survey should be conducted to
determine the soil properties.

The correct classification of soils is essential from an engineering point of view. Soil
classification is performed based on an analysis of soil properties. One of these is sieve
analysis, which determines soil particle size. Based on the sieve openings and the amount
of material remaining on the sieve, soil classification is achieved. Plasticity is another
relevant parameter that ought to be taken under consideration for the soil classification
procedure [4].

Atterberg [5] found a method to describe the state of fine-grained soil in terms of
moisture content. The limits used to describe the state of the soil are the liquid limit (LL),
plastic limit (PL), and shrinkage limit (SL). As shown in Figure 1, with drying, the soil
sample changes to a semisolid state and a solid state [6].
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The liquid limit (LL) and the plasticity index (PI) are important parameters in defining
and classifying soil. The moisture content from a plastic to a liquid state is the liquid
limit, and the moisture content at the point of transition from a semisolid to a plastic state
is the plastic limit [7]. Casagrande [8] determined the liquid limit experimentally. The
Casagrande cup and fall cone methods can be used to determine the liquid limit. The
plastic limit test is simple and is performed by repeated rolling of an elliptic soil mass by
hand on a ground glass plate [7]. The numerical difference between the liquid limit and the
plastic limit is defined as the plasticity index. Soil classification can be performed by using
the liquid limit and plasticity index values on the Casagrande plasticity card [7].

In mechanical analysis, the size range of particles in the soil is specified as a percentage
of the total dry weight. Sieve analysis is one of the methods used to determine the particle
size distribution of the soil [7]. In sieve analysis, the soil sample wobbles and shrinks as it
passes through sieves with different aperture sizes. [9]. The sieving process is monitored
by weighing the sieves at regular intervals [10]. US standard sieve numbers and the sizes
of openings in mm are given in Table 1.

Table 1. US standard sieve sizes [7].

Sieve No. Opening (mm) Sieve No. Opening (mm)

4 4.75 35 0.500
5 4.00 40 0.425
6 3.35 50 0.355
7 2.80 60 0.250
8 2.36 70 0.212
10 2.00 80 0.180
12 1.70 100 0.150
14 1.40 120 0.125
16 1.18 140 0.106
18 1.00 170 0.090
20 0.85 200 0.075
25 0.710 270 0.053
30 0.600

A practical common language is generated in geotechnical engineering through soil
classification. There are many soil classification systems available. The classification
systems developed for fine-grained soils are the Unified Soil Classification System (USCS),
the American Association of State Highway and Transportation Officials (AASHTO), and
the Federal Aviation Agency system [11].

In the soil classification process, the operation starts in a well-equipped lab, a good in-
terpretation of experimental findings can be only accomplished by an experienced geotech-
nical engineer leading a skilled team, and this process is costly [12]. Machine learning can
be used to classify the ground classes obtained by various experimental studies without
the need for experimental work.
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Moreno-Maroto et al. [11] stated in their studies that when classifying soil, parameters
other than grain size should be examined, such as plasticity. For that reason, the liquid
limit and plasticity index were added, as well as sieve analysis, when classifying the soil in
the coverage of that study.

Soil–structure interaction is an interdisciplinary issue that has been addressed since the
end of the 19th century [13]. Evaluation of the soil–structure interaction while monitoring
the building’s response is important, as the material properties of the underlying soil can
change the ground motion at the soil–foundation interface [14]. Therefore, it is necessary to
know the soil and its properties for all structures.

In recent years, the architecture, engineering, and construction (AEC) industry has
been benefiting much from artificial intelligence and machine learning. Several studies on
machine learning in civil engineering exist in the recent literature, including a classifica-
tion of failure modes [15,16], performance classifications and the prediction of reinforced
masonry structures [17], a prediction of the optimum parameters of passive-tuned mass
dampers [18,19], an estimation of the optimum design of structural systems [20], prediction
models for optimum fiber-reinforced polymer beams [21,22], a prediction of the axial com-
pression capacity of concrete-filled steel tubular columns [23], a prediction of the bearing
strength of double shear bolted connections [24], and predictions of the shear stress and
plastic viscosity of self-compacting concrete [25] and for the optimum design of cylindrical
walls [26].

As in many engineering fields, the use of artificial intelligence (AI) has become
widespread in geotechnical engineering. Recently, AI approaches such as machine learning
(ML), artificial neural networks (ANN), and deep learning (DL) have become popular
among geotechnical engineers. For instance, Isik and Ozden [27] examined the estimation
of the compaction parameters of coarse and fine-grained soils through ANN models using
different input datasets. They found that the generalization capability and prediction accu-
racy of ANN models could be further enhanced by sub-clustered data division techniques.
Momeni et al. [28] carried out a study to estimate the bearing capacity of piles with a
genetic algorithm (GA) optimization technique. The inputs of the GA-based ANN model
are the pile geometric properties, the pile set, and the hammer weight and drop height, and
the output was the pile’s ultimate bearing capacity. They found it advantageous to apply
GA-based ANN models as a highly reliable, efficient, and practical tool for estimating pile-
bearing capacity. Gambill et al. [29] effectively used the random forest model for predicting
USCS soil classification type from soil variables. They found that predictions from RF were
significantly better than previous crosswalk methods. Pham et al. [30] used and compared
four machine-learning methods to predict the shear strength of soft soil. They concluded
that a parsimonious network based on a fuzzy inference system (PANFIS) is a promising
technique for predicting the strength of soft soils. Díaz et al. [31] presented neural networks
to improve the determination of the influence factor (Ia), which considers the effect of a
finite elastic half-space limited by the inclined bedrock under a foundation. The results
obtained through the application of artificial neural networks (ANNs) demonstrated a no-
table enhancement in the predicted values for the influence factor in comparison with those
of existing analytical equations. Puri et al. [12] suggested that most AI models are reliable
in the prediction of missing data. Zhang et al. [32] tried to find a pressure module with
artificial intelligence methods; this is an important parameter, as it affects the compressive
deformation of geotechnical systems such as foundations and is also difficult and costly to
find. The authors suggested that by applying ML algorithms, a system can become intelli-
gent in self-understanding the relationship between input and output. A comparison of the
performance of empirical formulas and the proposed ML method for predicting foundation
settlement indicated the rationality of the proposed ML model. Momeni et al. [33] used
machine learning techniques to estimate pile-bearing capacity (PBC). They found that the
Gaussian process regression (GPR)-based model is capable enough to predict the PBC and
outperforms the GA-based ANN model. The results showed that the GPR can be utilized as
a practical tool for pile-bearing capacity estimation. Nguyen et al. [34] examined the effect
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of data splitting on the performance of machine learning methods in a prediction of the
shear strength of soil through training/test set validation. They used 70% of the dataset for
training and 30% of the dataset for testing. The results of this study have shown an effective
way to select the best ML model and appropriate dataset ratios to accurately estimate the
soil shear strength that will assist in the design and engineering phases of construction
projects. Martinelli and Gasser [35] applied machine learning models for predicting soil
particle size fractions. They compared performance in estimating particle size fractions in
their study. In the study, soil pH, cation exchange capacity, and elements extracted with
Mehlich-3 of 8364 soil samples taken from different parts of Canada were used as covariates
for the estimation of texture components. The researchers reported that multiple linear
regression and neural network models had the weakest prediction performance, and the
models with the best prediction performance were reported as RF, KNN, and XGBoost.
Nguyen et al. [4] suggested a new classification method for determining soil classes based
on support vector classification (SVC), multilayer perceptron (MLP), and random forest
(RF) models. The results indicated that the performance of all three models was good, but
the SVC model was the best in the accurate classification of soils. Tran [36] used a single
machine learning algorithm to predict and investigate the permeability coefficient of soil.
The author showed that SHapley Additive exPlanations (SHAP) and Partial Dependence
Plot 1D (PDP 1D) performed with the best performance aided by a reliable ML model, GB
(gradient boosting).

Based on the review of previous research, the main aim of this study was determined
as exploring new ML methods/algorithms to automatically classify soil for minimizing
the time and cost of the process. In this study, a new perspective is provided for soil
classification by utilizing different algorithms/classifiers for supervised learning.

2. Materials and Methods

The soil classification dataset used in this study was developed by the authors and com-
prises records that were acquired from the soil drillings of the new Gayrettepe—Istanbul
Airport metro line construction. The exploratory analysis model training and testing were
carried out with the help of Python libraries, such as NumPy, Pandas, Matplotlib, and
Scikit-learn. These libraries have been highly preferred in terms of accuracy and ease
of use. NumPy is one of the most useful Python packages when it comes to creating
applications requiring data science. It enables users to save and operate data as nd arrays
(n-dimensional arrays) instead of the lists and dictionaries that are usually used for saving
data in Python. One of the distinguishing features of nd arrays is their duration time in
operations on data elements, which is much shorter when compared to the duration of
operation time in Python lists [37]. Pandas has been used for reading the input and storing
data with fast and efficient data frame objects [38]. MatPlotlib is an essential package
for data scientists to demonstrate and analyze their findings in a visualized way. It is
a plotting package that makes common plots easy and novel or complex visualizations
possible [39]. Scikit-learn is the most commonly used machine learning library for the
classification of tabular data [40]. In the study, the ML models were trained and tested by
utilizing Python [41] as the language, Anaconda3 [42] as the environment, and Spyder 5.2.2
as the editor. Python was chosen as the coding language of this study, as it provides high
accuracy and performance [43].

2.1. Exploratory Data Analysis

The dataset used in the study comprises 805 soil sample records that were acquired
from the soil drillings of the new Gayrettepe–Istanbul Airport metro line construction
(Figures 2 and 3). The soil sample data were created using two methods. The first method
was to obtain soil samples from a single borehole log but at different depths, and the
second method included obtaining soil samples from different borehole logs. The data
were collected to acquire the same number of records for each parameter of the dataset.
Sometimes data were not available for a few parameters due to the variable state of the
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soil. In that case, data imputation was used to estimate unknown parameters. The soil
classification was performed according to the Standard Test Method for Classification of
Soils For Engineering Purposes (ASTM D 2487:1969 EQV) [44]. Five parameters, which are
common soil properties used in classification, were selected as the dataset parameters. The
apertures of sieve sizes were chosen as 4.75 mm and 0.075 mm, as these are the sieve sizes
used when soil classification is performed according to ASTM D 2487:1969 EQV [44].
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Based on this decision, the parameters (features) of the dataset were determined as: a
retaining No. 4 sieve, a passing No. 200 sieve, the liquid limit (LL), the plastic limit (PL), and
the plasticity index (PI). Based on these parameters, the data were classified into 5 classes:
high-plasticity clay (CH), low-plasticity clay (CL), clayey sand (SC), high-plasticity silt
(MH), and medium-plasticity clay (CI).

High-plasticity clay (CH) is a fine-grained soil, of which more than 50% of its particles
are smaller than 75 µm, its liquid limit is bigger than 50, it is inorganic, and in the plasticity
chart, the PI is on line A.

Low-plasticity clay (CL) is a fine-grained soil, of which more than 50% of its particles
are smaller than 75 µm, its liquid limit is fewer than 35, it is inorganic, and in the plasticity
chart, the PI is bigger than 4, and the PI is on line A.

Clayey sand (SC) is a coarse-grained soil, of which more than 50% of its particles are
bigger than 75 µm, and its fine grains can be low-plasticity clay (CL), medium-plasticity
clay (CI), or high-plasticity clay (CH).

High-plasticity silt (MH) is a fine-grained soil, of which more than 50% of its particles
are smaller than 75 µm, its liquid limit is bigger than 50, it is inorganic, and in the plasticity
chart, the PI is under line A.

Medium-plasticity clay (CI) is a fine-grained soil, of which more than 50% of its
particles are smaller than 75 µm, its liquid limit is between 35 and 50, it is inorganic, and in
the plasticity chart, the PI is on line A.

In the dataset, a retaining No. 4 sieve (for particles), a passing No. 200 sieve (for
particles), the liquid limit, the plastic limit, and the plasticity index were the inputs/features,
and the soil class was the output variable. The basic statistics of the features are provided
in Table 2.

Table 2. Basic statistics of features.

Features Min Max Mean Standard Deviation

Retaining No. 4 sieve 0 29.4 0.4365 2.4987
Passing No. 200 sieve 13.0 100 90.8599 12.9337

Liquid limit 23.1 90.0 53.4743 11.7505
Plastic limit 3.4 36.9 23.3158 29.6082

Plasticity index 7.3 62.0 30.4820 11.0532

The histogram and scatter plots of the dataset are shown in Figure 4. In the figure, no4
stands for retaining No. 4 sieve, no200 stands for passing No. 200 sieve, ll is the liquid limit,
pl is the plasticity limit, and pi denotes the plasticity index. Figure 4a shows that the liquid
limit, the plastic limit, and the plasticity limit are (normal-like) distributed, No. 4 sieve
values are close to 0 and highly positively skewed, and No.200 has a negatively skewed
distribution. Figure 4b shows that the liquid limit and the plasticity index have a high
positive correlation, the liquid limit and the plastic limit have a low positive correlation,
and the No. 4 sieve and No. 200 sieve do not correlate with other parameters.

The correlation between the features is shown in Figure 5. According to the color
scheme of the graph, cells of cream color indicate a high correlation, and the degree of
correlation decreases gradually as the color nears black. The highest correlation is observed
between the liquid limit and the plasticity index.

2.2. Data Preprocessing

The data preprocessing stage was focused on the transformation of data to achieve
accurate prediction models. Based on the nature of the dataset, missing value imputation
and data balancing techniques were used in this stage.
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2.2.1. Missing Value Imputation

A missing value is a situation that can be encountered in real data. The need to collect
data with missing values can be due to a malfunction of the test instrument, or missing
values may also exist due to the respondents not answering some questions of a survey [46].
Missing values of features can reduce the performance of a ML algorithm. Therefore, prior
to the model training, the missing value problem must be solved. Various methods are
available to deal with this problem [47]. In our study, except for the feature “passing
No. 200 sieve”, all features had missing data. The relative frequencies of missing data were
5.33%, 0.74%, 0.74%, and 6.32% for the retaining No. 4 sieve, the liquid limit, the plastic
limit, and the plasticity index, respectively.

There were a total of 106 missing values in the dataset of 805×6 (RxC). In the impu-
tation process, the missing (NaN) values were filled by utilizing a simple imputer with
mean and the KNN imputer from the “Imputer” class of the “Scikit-learn” library. In the
KNN imputer, the K-nearest neighbor approach is taken to complete missing values. In this
approach, missing values in the attribute are filled with the average value of neighbors [48].
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As explained in Section 3, the best-performing imputer was found as the KNN imputer and
implemented for the imputation of the missing values in the dataset. The basic statistics for
the dataset after data imputation with the KNN imputer are provided in Table 3.

Table 3. Basic statistics of features after data imputation with KNN Imputer.

Features Min Max Mean Standard Deviation

Retaining No. 4 sieve 0 29.4 0.4836 2.6136
Passing No. 200 sieve 13.0 100 90.8523 12.9319

Liquid limit 23.1 90.0 53.4301 10.8526
Plastic limit 3.4 36.9 23.3168 4.1062

Plasticity index 7.3 62.0 30.0529 8.4294

As depicted in Figure 6, the highest correlation is still between the liquid limit and the
plasticity index after the imputation process.
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2.2.2. Dealing with Imbalanced Data

The imbalance in class distribution affects the success of classifiers [49]. In this study,
since the soil formation can change even within one meter, an imbalance occurs naturally
between the soil classes during the sampling, as some soil classes were observed too
frequently, whereas some other soil classes were observed rarely in the process. The rate
of observation of high-plasticity clay (CH) was 71%, low-plasticity clay (CL) was 21%,
medium-plasticity clay (CI) was 3%, high-plasticity silt (MH) was 3%, and clayey sand
(SC) was 2%. To tackle this imbalance, oversampling was deemed to be the appropriate
method for balancing the data in terms of the dependent variable (i.e., soil class). The
oversampling in the study was performed utilizing the synthetic minority oversampling
technique (SMOTE) [49], which generates synthetic observations between the nearest
neighbors of observations in the minority class [50]. The SMOTE method helped to generate
a dataset with an equal distribution of the soil classes. Further details on the imbalance in
class distributions and the application of the SMOTE process are provided in Section 3.
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2.3. Classification with Machine Learning

Machine learning is a branch of artificial intelligence that is specifically focused on
the automation of learning with tabular data, and its four sub-fields include supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement learning.
In supervised learning, a model is developed with examples consisting of input and
outputs. In this type of learning, the aim is to enable the machine to gain experience
with certain (and provided) results to learn the path leading from the data to the results.
In reinforcement learning, the machine learns by interacting with its environment. The
technique is based on trial and error, where the model aims to win the most prizes until
the target [51,52]. Unsupervised learning has no labeled output. Some features that
the algorithm learns emerge from the data. The semi-supervised learning model is a
combination of the supervised learning and unsupervised learning models [53]. The
purpose is to improve learning performance by using abundant unlabeled data with
limited labeled data [54].

A general scheme of the supervised machine learning process is implemented in this
study, as illustrated in Figure 7. The dataset used in this study has a multi-class categorical
target variable with a label. Thus, classification algorithms/classifiers had to be imple-
mented to formulate a ML model for the prediction of the target variable. The algorithms
implemented and tested in our study for this purpose were decision (classification and
regression) trees (CART), naive Bayes (NB), support vector machine (SVM), the K-nearest
neighbor algorithm (KNN), ANNs (multi-layer perceptron (MLP)), stochastic gradient
descent (SGD), linear discriminant analysis (LDA), bagging, random forest (RF), gradient
boosting, light gradient boosting (LightGBM), extreme gradient boosting (XGBoosting), cat-
egorical gradient boosting (CatBoost), adaptive boosting (AdaBoost), and histogram-based
gradient boosting (HistGradBoost). Details of the classifiers (and related ML methods)
tested in this study are as follows.
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Foundational Methods: Decision trees/CART: A decision tree is a graph that provides
choices and results in a tree shape [55]. Decision trees are applied in many fields because
of their simple analysis approach and high success rates in the prediction of various
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data forms [53]. Classification and regression trees (CART) are one of the decision tree
algorithms and are the default implementation used in the decision tree classifier of the
Scikit-learn package. NB: The Naive Bayes algorithm defends Bayes’ theorem with the
predictors’ independence assumption, and this algorithm assumes that the features in the
class are not related to each other [53]. SVM: Support vector machine [43] can be used for
classification and regression problems [55]. The main idea of support vector machines is
to find a hyperplane in n-dimensional space to distinctly classify data points [56]. KNN:
The K-nearest neighbor algorithm is an easy-to-implement algorithm that can be used for
both classification and regression problems. The algorithm considers the K nearest data
points to predict the class for the new data point. MLP: Multi-layer perceptron is one of
the popular artificial neural networks, where multiple layers of neurons can be used to
predict a value or a class [57]. SGD: Stochastic gradient descent implements a gradient
descent algorithm through randomly picking one data point from the whole dataset at each
iteration to reduce the computation time [58]. LDA: Linear discriminant analysis (LDA) is
a dimensionality reduction technique [59] that can be used to separate different classes by
projecting the features in higher dimension space into a lower dimension space.

Ensemble Learning Methods: Two key approaches to ensemble learning are boosting
and bagging. Boosting refers to converting multiple weak models (weak learners) into
a single composite model (i.e., strong learners) [60]. The two main boosting techniques
are adaptive and gradient boosting. Gradient boosting handles boosting as a numerical
optimization problem in which the objective is to minimize the loss function of the model
by adding weak learners using the gradient descent algorithm [61]. Bagging is an ensemble
method that trains classifiers randomly [62]. RF: Random forest (RF) is one of the most
widely used bagging methods. It is used for solving problems in both regression and
classification. Random forest has two key parameters. These are the number of trees and
the number of randomly selected predictors on each node.

AdaBoost: Adaptive boosting (AdaBoost) is a popular boosting method for generating
ensembles, as it is adaptable and simple [63]. It focuses on training upon misclassified
observations and alters the distribution of the training dataset to increase weights on
sample observations that are difficult to classify [61].

LightGBM: Light gradient boosting (LightGBM) is a boosting method that requires
less computer memory and provides high performance [64].

XGBoost: Extreme gradient boosting (XGBoosting) is one of the boosting methods.
XGBoost is quite powerful at predicting and much faster than other gradient-boosting
methods [60].

CatBoost: Categorical gradient boosting (CatBoost) is another boosting method. Cat-
Boost does not need data preprocessing and takes care of categorical variables automati-
cally [61].

HistGradBoost: The histogram-based gradient boosting (HistGradBoost) algorithm is
faster than gradient boosting in big datasets. This algorithm has native support for missing
values [65].

2.4. Measuring the Classification Performance: The Metrics

Performance metrics are required to understand which algorithm/model performs
better for a given dataset. Most performance metrics used for the classification type of
problems are based on the confusion matrix [66]. This matrix contains values that enable
the interpretation of the model performance. Choosing the right metric is important for the
correct evaluation of the model [67]. The performance metrics used and their derivation
from the confusion matrix are provided in Table 4 [68].



Sustainability 2023, 15, 2374 11 of 18

Table 4. A simple illustration of a 2 × 2 confusion matrix and metrics.

Predicted
Actual

True False

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

Accuracy TP + TN/TP + FP + TN + FN
Precision TP + TN/TP + FP + TN + FN

Recall TP/TP + FN
F1-Score (2 × precision × recall)/(Precision + recall)

3. Results
3.1. Impact of Missing Data Imputation

In the study, first, the data have been pre-processed to deal with the missing data
points. To impute missing data in each feature, the simple imputer and the KNN imputer
were implemented and tested. To assess the impact of the different imputation techniques,
CART-based classification was implemented with .70/.30 train/test split validation (using
Python/Scikit-learn). As a result of data imputation with SimpleImputer with Mean, the
accuracy of the classification model was found to be 90.34%; as a result of data imputation
with KNN Imputer, the accuracy was found to be 91.56%. Thus, KNN Imputer was found
to be the better-performing imputer and selected as the imputer that would be used for
data imputation.

In the original dataset, 97 rows contained 106 cells with missing values, and 708 rows
contained cells with no missing values. To compare the prediction model accuracies in both
pre- and post-imputation scenarios:

(i). A total of 97 rows with missing values are removed from the original dataset, and this
dataset with 708 rows was named the pre-imputation-acc-test dataset. Following this,

(ii). random sampling (x 1000) is applied to select 708 rows out of 805 rows of the imputed
dataset, and this dataset was named the post-imputation-acc-test dataset.

CART classification is then implemented for both the pre-imputation-acc-test and post-
imputation-acc-test datasets with k-fold cross-validation (k = 10). The accuracy of prediction
of the pre-imputation-acc-test dataset was found to be 95.06%. The mean accuracy of
prediction for 1000 post-imputation-acc-test datasets that were generated (where 708 rows
were randomly selected in each dataset generation) was found to be 94.91%.

The results demonstrated that the data imputation method applied had nearly no
negative impact on the accuracy/performance of the classification, and thus the imputed
dataset containing 805 rows was used in the further stages of the research in place of the
original dataset with missing values.

3.2. Impact of Data Balancing

The distribution of the classes in the original dataset is shown in Table 5. The class
imbalance problem is evident in the dataset. In our study, SMOTE was used as the re-
sampling method to tackle the class imbalance problem. As the occurrences of three out
of five classes (MH/CI/SC) were relatively rare, and the occurrences of the remaining
two classes (especially CH) were relatively very high or high, the input dataset for the
SMOTE method was prepared with a special selective sampling approach proposed by the
authors. This sampling approach aimed to prevent the generation of too many synthetic
data rows (as a result of oversampling strategy followed by SMOTE), as the number of
occurrences of CH and CL classes were very high in the dataset (i.e., CH:567; CL:169). In
this approach, 60 random samples were selected from 567 occurrences of the CH class and
169 occurrences of the CL class, and later, 25 occurrences of CI, 25 occurrences of MH, and
19 occurrences of SC were added to these (60 + 60) 120 samples of CH and CL classes to
form the input dataset. The input dataset for the SMOTE process consisted of 189 rows and
is named the selective sample dataset. After the implementation of the SMOTE method for
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oversampling, the resulting dataset contained a total of 300 rows and is named the SMOTE
(generated) sample dataset.

Table 5. Class distributions in pre- and post-SMOTE scenarios.

Features CH CL MH CI SC Total

Pre-SMOTE class distribution (full dataset) 567 169 25 25 19 805
Pre-SMOTE class distribution (selective sample) 60 60 25 25 19 189
Post-SMOTE class distribution (SMOTE sample) 60 60 60 60 60 300

Prior to SMOTE sampling, CART-based classification with k-fold cross-validation
(k = 10) was implemented and conducted 1000 times on the selective sample dataset (i.e., the
dataset with 189 rows). Following the SMOTE sampling, CART-based classification with
k-fold cross-validation (k = 10) was again implemented and conducted 1000 times on the
SMOTE-generated dataset (i.e., a dataset with 300 rows). First, performance metrics in
terms of a mean of 1000 runs were obtained for pre- and post-SMOTE implementation
scenarios. Following this, a confusion matrix, set of metrics, and the feature’s importance(s)
were obtained in each pre- and post-SMOTE scenario, based on Scikit-learn decision tree
classifier’s feature importance method. In this method, the importance of a feature is
computed as the (normalized) total reduction of the criterion brought by that feature. The
technique is also known as the Gini importance [69].

The confusion matrix (and its metrics) of 1000 runs of 10-fold cross-validation is
provided in Table 6. The matrix is generated by taking the mean values of each cell of
confusion matrices generated in 1000 runs. The metrics provided in the table are calculated
based on the mean confusion matrix.

Table 6. The mean CM and metrics of 10-fold CV of selective sample dataset.

Confusion Matrix

Predicted CH CL MH CI SC
CH 53 4 1 2 0
CL 1 48 2 0 9

True MH 0 1 18 0 0
CI 2 1 0 21 1
SC 0 9 0 0 16

Class
Overall Accuracy Precision Recall F1-Score

Accuracy 0.8254 CH 0.8833 0.9464 0.8833 0.9138
Precision 0.8188 CL 0.8000 0.7619 0.8000 0.7805

Recall 0.8221 MH 0.9474 0.8571 0.9474 0.9000
F1-Score 0.8193 CI 0.8400 0.9130 0.8400 0.8750

SC 0.6400 0.6154 0.6400 0.6275

The mean values of (mean feature importance detected in each fold of) 10-fold cross-
validation for 1000 runs is provided in Table 7.

Table 7. Mean feature importance of 10-fold CV of selective sample dataset.

Features Importance Rank

Retaining No. 4 sieve 0.0031 5
Passing No. 200 sieve 0.2351 3

Liquid limit 0.3584 1
Plastic limit 0.2396 2

Plasticity index 0.1639 4

The post-SMOTE confusion matrix (and its metrics) of 1000 runs of 10-fold cross-
validation is provided in Table 8. This matrix is generated by taking the mean values of



Sustainability 2023, 15, 2374 13 of 18

each cell of the confusion matrices generated in 1000 runs utilizing the SMOTE (generated)
sample dataset this time.

Table 8. The mean CM and metrics of 10-fold CV of SMOTE (generated) sample dataset.

Confusion Matrix

Predicted CH CL MH CI SC
CH 54 4 0 2 0
CL 1 46 2 0 11

True MH 0 0 60 0 0
CI 2 2 0 56 0
SC 0 9 0 0 51

Class
Overall Accuracy Precision Recall F1-Score

Accuracy 0.8900 CH 0.9000 0.9464 0.9000 0.9231
Precision 0.8915 CL 0.7667 0.7541 0.7667 0.7603

Recall 0.8900 MH 1.0000 0.9677 1.0000 0.9836
F1-Score 0.8904 CI 0.9333 0.9655 0.9333 0.9492

SC 0.8500 0.8226 0.8500 0.8361

The mean values of (mean feature importance detected in each fold of) 10-fold cross-
validation for 1000 runs for this dataset is provided in Table 9.

Table 9. Mean feature importance of 10-fold CV of SMOTE (generated) sample dataset.

Features Importance Rank Rank Change

Retaining No. 4 sieve 0.0012 5 0
Passing No. 200 sieve 0.3212 1 +2

Liquid limit 0.2716 3 −2
Plastic limit 0.2881 2 0

Plasticity index 0.1179 4 0

When the pre- and post-SMOTE implementation scenarios are compared, it is evident
that tackling class imbalance contributes to the performance of the models (i.e., to the
overall accuracy of prediction). In addition, a comparison of confusion matrices (and
related metrics) indicates a significant increase in prediction accuracies in three classes
that have rare occurrences prior to SMOTE, as well as a slight increase in the accuracy of
prediction for the CH class. For the CL class, we observed a 4% decrease in the prediction
accuracy (Table 10).

Table 10. Differences in class prediction accuracy in pre- and post-SMOTE scenarios.

Class Accuracy Change

CH +2%
CL −4%
MH +6%
CI +9%
SC +21%

The results demonstrate that balancing the classes of the imbalanced soil dataset
contributes to the overall prediction accuracy and has a significant positive impact in
predicting the classes with rare occurrences (i.e., MH/CI/SC), but we cannot defend this
same proposition for the classes with high occurrence rates (i.e., CH/CL).

In the comparison of feature importance in pre- and post-SMOTE implementation
scenarios, in the post-SMOTE scenario, a two-level increase in the importance rank of the
passing No. 200 sieve and a two-level decrease in the importance rank of the liquid limit
are observed. The importance rank of the other three features remained unchanged in
both scenarios.
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When classes become balanced, the passing No. 200 sieve becomes the key predictor of
the soil class. In the imbalanced dataset, the key predictor appears to be the liquid limit. In
both scenarios, the plasticity limit appears to be the key supporting predictor, independent
of the change in the key predictor. Similarly, the retaining No. 4 sieve appears to be the
least effective predictor in both scenarios. This might be due to the big aperture size of the
No.4 sieve (i.e., 4.75 mm). The soil particles pass through the No.4 sieve easily, and the
remaining soil particles in the No.4 sieve are very few.

3.3. Comparison of Classifier Performance

The comparison of the classifier performances is accomplished through the program
code developed by the authors. The code makes use of the Scikit-learn [40], XGBoost,
CatBoost, and LightGBM libraries in the training and testing of the models. The dataset
used in the process was the SMOTE (generated) sample dataset, and the validation strategy
was selected as a single run of k-fold cross-validation (k = 10). The performance metric
for the model/classifier evaluation and comparison was selected as the mean/standard
deviation of cross-validation accuracy.

The test was conducted in two stages. In the first stage, the performance of the seven
foundational classifiers was evaluated. The model trained with the decision tree (CART)
classifier provided the highest prediction accuracy, i.e., 90.66% (which can be regarded as
very good, as the number of classes is five), whereas the model trained with the stochastic
gradient descent classifier provided the worst prediction performance, i.e., 53.66% (which
cannot be regarded as very low for a five-class classification problem). The prediction
accuracy of other models trained with the remaining five classifiers was between 79% and
73%, (which can be regarded as average, or slightly over average, as the number of rows in
the sample was only 300, and the number of classes was five).

In the second stage, the performance of the ensemble classifiers was tested. The
models trained with the XGBoost and LightGBM classifiers appeared to be the most
accurate models among this group, with accuracy rates of 90.33% and 90%, and the worst
performer of the group was the model trained with the AdaBoost classifier, with an accuracy
of 60.33%. The bagging classifier also performed significantly lower than the others among
the remaining five classifiers, with 74.33% accuracy (note: the performance can change
with different sub-classifier selections). Models trained with the four other classifiers,
namely, the histogram-based gradient-boosting classifier, the gradient-boosting classifier,
the categorical gradient-boosting classifier, and the random forest classifier, provided
accuracies between 89% and 87%, which can be accepted as high accuracy rates for a five-
class classification problem trained with limited input data. The results of the comparison
tests are provided in Table 11.

Table 11. Comparison of classifiers.

Classifier Python Package Mean Accuracy (10-Fold-CV) Mean Std. Dev.(10-Fold-CV)

Foundational:
DecisionTreeClassifier Scikit-learn 0.9066 0.0771

MultiLayerPerceptronClassifier * Scikit-learn 0.7933 0.1624
KNeighborsClassifier Scikit-learn 0.7933 0.1854
GaussianNaiveBayes Scikit-learn 0.7900 0.1612

SupportVectorMachineClassifier Scikit-learn 0.7666 0.2027
LinearDiscriminantAnalysis Scikit-learn 0.7333 0.1527

StochasticGradientDescentClassifier Scikit-learn 0.5366 0.3760
Ensemble:

XGBClassifier XGBoost 0.9033 0.0982
LGBMClassifier LightGBM 0.9000 0.1021
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Table 11. Cont.

Classifier Python Package Mean Accuracy (10-Fold-CV) Mean Std. Dev.(10-Fold-CV)

HistGradientBoostingClassifier Scikit-learn 0.8933 0.1030
GradientBoostingClassifier Scikit-learn 0.8866 0.1002

CatBoostClassifier Catboost 0.8866 0.1056
RandomForestClassifier Scikit-learn 0.8766 0.1256

BaggingClassifier ** Scikit-learn 0.7433 0.1414
AdaBoostClassifie Scikit-learn 0.6033 0.3787

Additional Hyperparameters: * max_iter=1000, ** DecisionTreeClassifier, max_samples=0.5, max_features=0.5.

4. Discussion

In the first stage of the research, the impact of data imputation was explored. The
findings of this stage showed that the data imputation method applied had nearly no
negative impact on the accuracy/performance of the classification of this dataset, and the
imputed dataset can be used in lieu of the original dataset for this problem.

To tackle the imbalance of classes in the dataset, the SMOTE resampling method was
implemented to generate a sample in which the distribution of classes is equal. Following
this, classification accuracy was tested for both pre- and post-SMOTE datasets, and it was
found that tackling the class imbalance significantly contributed to the performance of the
classification models. Furthermore, the accuracy in the prediction of four out of five classes
increased, and this increase was very significant for three out of the five classes, which had
rare occurrences in the original dataset.

The final stage of the study was focused on a comparison of the classifier performances.
Decision tree (CART) was the most successful classifier among the foundational group. In
addition, most boosting classifiers in the ensemble group performed well (with AdaBoost
being the exception). In previous research, Harlianto et al. [70] used machine learning
algorithms such as ANN/neural networks, decision trees, naive Bayes, and support vector
machines (SVM) for soil classification. The authors found soil type classification accuracy of
more than 70% using these machine learning models. SVM showed the best performance for
classifying the soil type in their studies. When compared with [70], our results demonstrate
a significant improvement in the accuracy of prediction (from 70% to 90%).

5. Conclusions

Soil classification is extremely important for defining the type and characteristics of
the soil and examining its behavior. Soil classification is costly, and furthermore, time-
consuming field and laboratory tests are required during the process. Ongoing research
efforts aim to reduce this cost and the time spent in soil type classification. Time- and
cost-efficient soil classification can be achieved by benefiting from machine learning.

This research aimed to explore new ML methods/algorithms to automatically classify
soil for minimizing the time and cost of the classification process. In this research, we
worked with a dataset comprised of a total number of 805 soil sample records acquired from
the soil drillings of the new Gayrettepe–Istanbul Airport metro line construction. In the
preprocessing stage, two types of problems appeared. The first one was related to missing
data, and the second one involved the class imbalance in the dataset. In the study, solutions
to these problems were investigated, and different approaches were tested. To tackle the
missing data problem, the missing data points were imputed with KNN Imputer, as it
was found to be the better-performing imputer among the two tested. Once the accuracy
of the pre- and post-imputation scenarios was compared, it was observed that the data
imputation method applied had nearly no negative impact on the accuracy/performance
of the classification. Imputation of the dataset enabled us to work with data without
losing the information regarding rarely occurring classes (i.e., if all the rows with missing
data points were deleted, some of the rare occurring classes, MH/CI/SC, would also be
erased, which would leave a (sub) dataset with very rare occurrences of those classes,
and thus overall, data would not be suitable for machine learning). To tackle the data
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imbalance problem, SMOTE was used as the method for oversampling the dataset and
generating a new sample with balance in its class distribution. The tests conducted in the
data-balancing stage demonstrated that prediction accuracy is positively correlated with the
balance in class distribution, and balancing the classes in the dataset helps to achieve higher
performance in the soil type classification problem. We also checked the feature importance
in pre- and post-data balancing scenarios and found out that the passing No. 200 sieve
was the key predictor of the soil class when classes were balanced. Finally, we conducted
tests to figure out which classifier/method works better for classifying the soil type. The
findings of that stage indicated that tree-based foundational methods/classifiers, such
as the decision tree classifier, and gradient-boosting-based ensemble methods/classifiers,
such as XGBoost and LightGBM, provide very good performance (i.e., +90% accuracy) for
a five-class classification problem trained with a relatively small dataset (i.e., 300 rows).

Deep learning is a continuously growing field of artificial intelligence, and we plan to
explore the accuracy of different ANN architectures for soil classification in the future. We
also plan to validate the results with new datasets in our future research.
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26. Bekdaş, G.; Cakiroglu, C.; Islam, K.; Kim, S.; Geem, Z.W. Optimum Design of Cylindrical Walls Using Ensemble Learning
Methods. Appl. Sci. 2022, 12, 2165. [CrossRef]

27. Isik, F.; Ozden, G. Estimating compaction parameters of fine-and coarse-grained soils by means of artificial neural networks.
Environ. Earth Sci. 2013, 69, 2287–2297. [CrossRef]

28. Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H. Prediction of pile bearing capacity using a hybrid genetic algorithm-based
ANN. Measurement 2014, 57, 122–131. [CrossRef]

29. Gambill, D.R.; Wall, W.A.; Fulton, A.J.; Howard, H.R. Predicting USCS soil classification from soil property variables using
Random Forest. J. Terramech. 2016, 65, 85–92. [CrossRef]

30. Pham, B.T.; Hoang, T.A.; Nguyen, D.M.; Bui, D.T. Prediction of shear strength of soft soil using machine learning methods.
CATENA 2018, 166, 181–191. [CrossRef]

31. Díaz, E.; Brotons, V.; Tomás, R. Use of artificial neural networks to predict 3-D elastic settlement of foundations on soils with
inclined bedrock. Soils Found. 2018, 58, 1414–1422. [CrossRef]

32. Zhang, D.M.; Zhang, J.Z.; Huang, H.W.; Qi, C.C.; Chang, C.Y. Machine learning-based prediction of soil compression modulus
with application of 1D settlement. J. Zhejiang Univ.-Sci. A 2020, 21, 430–444. [CrossRef]

33. Momeni, E.; Dowlatshahi, M.B.; Omidinasab, F.; Maizir, H.; Armaghani, D.J. Gaussian process regression technique to estimate
the pile bearing capacity. Arab. J. Sci. Eng. 2020, 45, 8255–8267. [CrossRef]

34. Nguyen, Q.H.; Ly, H.B.; Ho, L.S.; Al-Ansari, N.; Le, H.V.; Tran, V.Q.; Prakash, I.; Pham, B.T. Influence of data splitting on
performance of machine learning models in prediction of shear strength of soil. Math. Probl. Eng. 2021, 2021, 4832864. [CrossRef]

35. Martinelli, G.; Gasser, M.O. Machine learning models for predicting soil particle size fractions from routine soil analyses in
Quebec. Soil Sci. Soc. Am. J. 2022, 86, 1509–1522. [CrossRef]

36. Tran, V.Q. Predicting and Investigating the Permeability Coefficient of Soil with Aided Single Machine Learning Algorithm.
Complexity 2022, 2022, 8089428. [CrossRef]

37. Bressert, E. SciPy and NumPy; O’Reilly: Beijing, China, 2013; pp. 1–41.
38. About Pandas. Available online: https://pandas.pydata.org/ (accessed on 11 January 2023).
39. Matplotlib—Visualization with Python. Available online: https://matplotlib.org/stable/users/project/mission.html (accessed

on 10 January 2023).
40. Scikit-Learn Package. Available online: https://scikit-learn.org/stable/ (accessed on 1 December 2022).
41. Python (3.9) [Computer software]. Available online: http://python.org (accessed on 1 December 2022).
42. Anaconda3 [Computer software]. Available online: https://anaconda.org/ (accessed on 1 December 2022).
43. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
44. ASTM D2487; Standard Test Method for Classification of Soils for Engineering Purposes. 1969: R1975. ASTM: West Conshohocken,

PA, USA, 1975.
45. Performance Tests to Start on High-Speed Metro Line to Istanbul Airport. Available online: https://www.dailysabah.com/

business/transportation/performance-tests-to-start-on-high-speed-metro-line-to-istanbul-airport?gallery_image=undefined#
big (accessed on 10 January 2023).

46. Suthar, B.; Patel, H.; Goswami, A. A survey: Classification of imputation methods in data mining. Int. J. Emerg. Technol. Adv. Eng.
2012, 2, 309–312.

http://doi.org/10.1016/j.jobe.2019.100847
http://doi.org/10.1007/s11709-021-0774-0
http://doi.org/10.1016/j.conbuildmat.2022.129227
http://doi.org/10.1016/j.engstruct.2021.113497
http://doi.org/10.3390/su142114640
http://doi.org/10.3390/app12042165
http://doi.org/10.1007/s12665-012-2057-5
http://doi.org/10.1016/j.measurement.2014.08.007
http://doi.org/10.1016/j.jterra.2016.03.006
http://doi.org/10.1016/j.catena.2018.04.004
http://doi.org/10.1016/j.sandf.2018.08.001
http://doi.org/10.1631/jzus.A1900515
http://doi.org/10.1007/s13369-020-04683-4
http://doi.org/10.1155/2021/4832864
http://doi.org/10.1002/saj2.20469
http://doi.org/10.1155/2022/8089428
https://pandas.pydata.org/
https://matplotlib.org/stable/users/project/mission.html
https://scikit-learn.org/stable/
http://python.org
https://anaconda.org/
http://doi.org/10.1007/BF00994018
https://www.dailysabah.com/business/transportation/performance-tests-to-start-on-high-speed-metro-line-to-istanbul-airport?gallery_image=undefined#big
https://www.dailysabah.com/business/transportation/performance-tests-to-start-on-high-speed-metro-line-to-istanbul-airport?gallery_image=undefined#big
https://www.dailysabah.com/business/transportation/performance-tests-to-start-on-high-speed-metro-line-to-istanbul-airport?gallery_image=undefined#big


Sustainability 2023, 15, 2374 18 of 18

47. Maniraj, S.P.; Chaudhary, D.; Deep, V.H.; Singh, V.P. Data aggregation and terror group prediction using machine learning
algorithms. Int. J. Recent Technol. Eng. 2019, 8, 1467–1469. [CrossRef]

48. Scikit-Learn Imputers. Available online: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute (accessed
on 1 December 2022).

49. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

50. Ayhan, D. Multi-Class Classification Methods Utilizing Mahalanobis Taguchi System ans a Re-Sampling Approach for Imbalanced
Data Sets. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2009.

51. Yao, Q.; Yang, H.; Bao, B.; Yu, A.; Zhang, J.; Cheriet, M. Core and spectrum allocation based on association rules mining in
spectrally and spatially elastic optical networks. IEEE Trans. Commun. 2021, 69, 5299–5311. [CrossRef]

52. Aksoy, S. Classsification of VOC Vapors Using Machine Learning Algorithm. Master’s Thesis, Yildiz Technical University,
Istanbul, Turkey, 2022.

53. Mrva, J.; Neupauer, Š.; Hudec, L.; Ševcech, J.; Kapec, P. Decision support in medical data using 3D decision tree visualisation. In
Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4.

54. Xu, Y.; Shang, L.; Ye, J.; Qian, Q.; Li, Y.F.; Sun, B.; Li, H.; Jin, R. Dash: Semi-supervised learning with dynamic thresholding. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 11525–11536.

55. Mahesh, B. Machine learning algorithms-a review. Int. J. Sci. Res. 2020, 9, 381–386.
56. Zan, Ç.Ö. Prediction of Soil Radon Gas Using Meteorological Parameters with Machine Learning Algorithms. Master’s Thesis,

Dokuz Eylül University, İzmir, Turkey, 2021.
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