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1. Introduction

1.1. Groups of finite Morley rank, their actions, and binding groups

Groups of finite Morley rank are abstract groups, possibly with additional structure, 
equipped with a notion of dimension that assigns to every definable set X a natural 
number, called Morley rank and denoted by rk(X), satisfying well-known rudimentary 
axioms, given for example in [13]. Examples are furnished by algebraic groups over 
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algebraically closed fields, with rk(X) equal to the dimension of the Zariski closure of X. 
Groups of finite Morley rank equipped with a definable action arise naturally as binding 
groups in many first order theories: for example, Lie groups of the Picard–Vessiot theory 
of linear differential equations can be viewed as a special case [40]. A more detailed 
discussion of binding groups that play in model theory a role akin to that of Galois 
groups could be found in the Introduction to [5].

The present paper is one of the first steps in a research programme aimed at deeper 
understanding of definable actions of groups of finite Morley rank and, in particular, 
binding groups. To explain the programme, we need a brief overview of the current state 
of the classification of simple groups of finite Morley rank.

1.2. Simple groups of finite Morley rank

The development of the theory of groups of finite Morley rank started around 1980 
in pioneering works by Zilber [44] and Cherlin [22]; they formulated what remains the 
central conjecture:

Simple infinite groups of finite Morley rank are algebraic groups over algebraically 
closed fields.

The biggest result towards the Cherlin–Zilber Conjecture is the characterization below 
of algebraic groups over fields of characteristic 2 (‘even type’).

Fact 1.1 ([2]). If a simple group G of finite Morley rank contains an infinite elementary 
abelian 2-subgroup (we say in this situation that G is of even type) then G is isomorphic 
to a simple algebraic group over an algebraically closed field of characteristic 2.

In view of this result and properties of Sylow 2-subgroups in groups of finite Morley 
rank [9], the remaining configurations in a proof of the Cherlin–Zilber Conjecture in-
volve either groups of degenerate type, that is, simple groups without involutions (here a 
counterexample may emerge) or groups where a Sylow 2-subgroup contains a non-trivial 
divisible abelian subgroup of finite index (groups of odd type).

Since most proofs in the classification project use induction on Morley rank, it is 
convenient to say that a group of finite Morley rank is a K-group if all its simple definable 
sections (that is, groups of the form H/K for definable subgroups K � H � G) are 
algebraic groups. We say that G is a K∗-group if proper definable subgroups of G are 
K-groups. Obviously, a minimal counterexample to the Cherlin–Zilber Conjecture is a 
K∗-group.

For a group G of odd type, the crucial parameter is the Prüfer 2-rank, pr(G), that 
is, the number of copies of Z2∞ in the direct sum decomposition T = Z2∞ × · · · × Z2∞

of a maximal divisible 2-subgroup T of G. The present state of affairs is stated in the 
following theorem, which summarises a series of works by Altınel, Berkman, Borovik, 
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Burdges, Cherlin, Deloro, Frécon, and Jaligot [1,3,4,7,6,8–10,14–21,23,25,26,28,33–36]
and reduces the classification of groups of odd type to a number of “small” configurations.

Fact 1.2. Let G be a simple group of odd type with the property that, for any definable 
proper subgroup H, if K �H is such that H/K is simple, then the latter is an algebraic 
group. Then either G is algebraic or its Prüfer 2-rank is at most 2.

A dramatic recent step, resolving a key issue from Cherlin’s 1979 paper [22], was 
Frécon’s 2016 elimination of ‘bad groups’ of Morley rank 3 [36]. This remarkable result 
has given new momentum to research around the Cherlin–Zilber Conjecture.

1.3. Back to permutation groups of finite Morley rank

In the context of groups of finite Morley rank that are also permutation groups (thus 
having a definable faithful action), the proof of the following theorem, due to Borovik 
and Cherlin [11], indicates the role of the classification technique: an answer to a basic 
question about actions of groups of finite Morley rank required the full strength of 
the Even Type Theorem (Fact 1.1) and the full range of techniques developed for the 
study of groups of odd type, as well as analogues of finite group-theoretic methods 
(O’Nan–Scott/Aschbacher reductions) from Macpherson and Pillay [39].

Fact 1.3 ([11]). There exists a function ρ : N → N with the following property. If a group 
G of finite Morley rank acts on a set X faithfully and definably primitively, then

rk(G) � ρ(rk(X)).

Here the action is definably primitive if there is no non-trivial definable equivalence 
relation on X preserved by G. This result, together with a reasonably well-developed 
classification of simple groups of finite Morley rank, suggests that definable actions of 
groups of finite Morley rank allow some form of description and classification. Once it is 
completed, this classification should take further the theorem by Macpherson and Pillay 
[39] that gives a general structural description of primitive groups of finite Morley rank 
similar to the celebrated O’Nan–Scott Theorem about finite primitive groups [37].

An analogy with finite group theory may be useful. For finite groups, the classification 
of finite simple groups (CFSG) – frequently used through one of its numerous corollaries, 
the classification of finite 2-transitive permutation groups – has had a profound impact, 
for example on combinatorics and representation theory. In model theory, groups of finite 
Morley rank naturally appear as definable groups of automorphisms of structures, or as 
binding groups, and one expects that strong structural results on simple groups of finite 
Morley rank will have a similarly strong impact in model theory. For instance, in finite 
permutation group theory, CFSG is typically applied through the O’Nan–Scott Theorem 
and results of Aschbacher on (maximal) subgroups of classical groups; by [39], analogous 
results hold for finite Morley rank.
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1.4. Primitive groups of finite Morley rank

One of the types of primitive groups of finite Morley rank, called affine type, is a 
semidirect product H = V � G of two connected groups of finite Morley rank, with V
being abelian and G acting faithfully, definably, and irreducibly on V by automorphisms. 
(In this setting, if V has no non-trivial proper definable G-invariant subgroups, we say 
that G acts irreducibly on V . We will also use a closely related term: V is G-minimal, or 
G acts on V minimally, if V contains no infinite proper definable G-invariant subgroup.) 
Then it is easy to see that G is a maximal definable subgroup of H, and the action of H
on the factor space H/G is primitive. All known examples come from rational actions of 
a reductive algebraic group acting on a unipotent algebraic group, both over the same 
field K, and even in this case it is not known whether V has the structure of a K-vector 
space preserved by G. This leads to a major problem:

Problem 1. Is it true that if H = V �G is a primitive group of finite Morley rank of affine 
type, then V has the structure of a vector space over an algebraically closed field F , and 
the action of G preserves this structure?

In other words, is it true that if a connected group G of finite Morley rank acts 
definably and irreducibly on a abelian group V , then V is a vector space over some 
algebraically closed field F , and G is a subgroup of GL(V )? The answer is positive in a 
number of special cases [12,24,27], but, rather surprisingly, in general it remains unknown, 
even in the category of algebraic groups – with the exception of the characterisation of 
natural modules for Chevalley groups [29,32,42,43], and some modules for SL2 close to 
natural modules [30,31].

Problem 2. Is it true that if H = V �G is an algebraic group over an algebraically closed 
field F , and V is abelian and contains no non-trivial proper G-invariant closed subgroups, 
then V has the structure of a vector space over F , and the action of G preserves this 
structure?

The proofs in [11] show the importance of bounds on generically multiply transitive 
actions. By definition, a group G acts generically n-transitively on a set X if the induced 
action of G on Xn has a generic orbit A. In addition, this action is generically sharply 
n-transitive if the stabiliser of a point in A is trivial. We also say that the action is 
generically multiply transitive if n > 1.

Fact 1.4 ([11, Corollary 2.2 and Proposition 2.3]).

(a) There is a function τ : N → N such that for any virtually definably primitive permu-
tation action of a group G of finite Morley rank that is generically t-transitive on a 
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set X of rank n,

t � τ(n).

(b) For every function τ as in (a), the function ρ in Fact 1.3 can be chosen so that

ρ(n) � nτ(n) +
(
n

2

)
.

It is worth noting that in the case of algebraic groups, the classification of rational 
generically multiply transitive actions of simple algebraic groups is known only in char-
acteristic 0 [41], and the group E6 has a generically 4-transitive action. So we repeat two 
question asked in [11].

Problem 3.

(a) Extend Popov’s work [41] and find all the generically sharply n-transitive actions of 
algebraic groups over algebraically closed fields for n � 2.

(b) Extend it further to all characteristics and to the finite Morley rank permutation 
group category in which the groups are Chevalley groups or products of Chevalley 
groups and tori.

Problem 4. Prove that, when τ is as in Fact 1.4, then

τ(n) � n + 2,

with equality possible only for the natural action of PGLn+1(F ) on the projective space 
PFn over an algebraically closed field F .

1.5. The result of this paper

The result proven in this paper deals with one of the crucial configurations in this line 
of study of primitive actions of groups of finite Morley rank.

Theorem 1. Let G and V be groups of finite Morley rank, V a connected abelian group of 
Morley rank n without involutions. Assume that G acts on V definably, and the action 
is generically sharply m-transitive for m � n. Then m = n, and there is an algebraically 
closed field F such that V ∼= Fn and G ∼= GL(V ), and the action is the natural action.

A group V �G satisfying the assumptions of Theorem 1 appears as a point stabiliser in 
the canonical action of the projective general linear group PGLn+1(F ) on the projective 
space PFn; this configuration is unavoidable in any systematic analysis of definable 
actions of groups of finite Morley rank – in particular, in solving Problem 4 and obtaining 
better bounds in Fact 1.3.
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The proof of Theorem 1 appears to be deceptively self-contained; indeed it uses only 
the general theory of groups of finite Morley rank, with two notable exceptions: the 
basis of induction, the case n � 3, is a combination of delicate work by Deloro [27] and 
a difficult result by Borovik and Deloro [12] that uses almost all existing machinery of 
the classification of groups of odd type, while the final identification of the group G with 
GL(V ) uses our previous result [5]; the proof of the latter required revisiting the older 
stages of the classification of groups of finite Morley rank [4].

The case when V contains an involution requires an approach different from that of 
the present paper. It is easy to show that in this case V is an abelian group of exponent 2. 
One reason for the need for a special treatment is the non-existence, in characteristic 2, of 
the hyperoctahedral group (see Lemma 3.1), which is essential in our arguments. Another 
is the fact that all simple groups of finite Morley rank and of even type are known to 
be algebraic groups over algebraically closed fields of characteristic 2 [2]. Thanks to 
this fact and other results from [2], the problem reduces to the configuration where 
G = O(G) ∗ E(G) is the central product of two definable subgroups O(G) and E(G); 
here, O(G) is the maximal normal definable subgroup of G without involutions, and 
E(G) is a central product of simple algebraic groups over algebraically closed fields of 
characteristic 2. The proof uses heavily the theory of simple algebraic groups and will 
be published elsewhere.

1.6. Some immediate future developments

Of course, it is desirable to remove from Theorem 1 assumption of sharpness of the 
generically m-transitive question in question. This is done by methods different from 
those of the present paper and will be published elsewhere. Our proof involves solving, 
for the specific case of the hyperoctahedral group Σm = Z2 � Symm (see definitions in 
Section 2.3), the following problem.

Problem 5 ([11, Problem 8]). Let Σ be a finite group. Find the minimal rank of a con-
nected solvable group of finite Morley rank that affords a faithful representation of a 
finite group Σ̂ that covers Σ, i.e. maps homomorphically onto Σ.

2. Generalities

2.1. Preliminaries

Terminology and notation used in this paper follow [2,13]. Throughout this paper, all 
groups are assumed to be of finite Morley rank, all subgroups and actions definable. For 
a definable set X, its Morley rank is denoted rkX.

The structure of nilpotent groups of finite Morley rank is well-known. Recall that a 
group G is called divisible if for every non-zero integer n and every g ∈ G, xn = g has a 
solution in G.



A. Berkman, A. Borovik / Journal of Algebra 513 (2018) 113–132 119
Fact 2.1 ([2, Proposition I.5.8]). If G is a connected nilpotent group, then we can express 
G = U ∗ R as a central product of two of its definable normal subgroups, where U has 
bounded exponent, R is divisible, and U ∩R is finite.

Existence of an involutory automorphism may control the structure of the group under 
certain conditions, as the following fact shows.

Fact 2.2 ([2, Lemma I.10.3] [13, Exercises 13, 15, pp. 78–79]). Let G be a group and ϕ
be a definable automorphism of order 2 of G.

(a) If ϕ does not fix any non-trivial elements in G, then G has no involutions and ϕ is 
the inversion automorphism on G.

(b) If G is connected and ϕ fixes only finitely many elements in G, then ϕ is the inversion 
automorphism on G.

Hence, in both cases, G is abelian.

A divisible abelian group is called a decent torus if it is the definable hull of its torsion 
part [2, Definition I.1.10].

Fact 2.3. If G is a connected group of Morley rank 1, then it is abelian. Moreover, one 
of the following holds: G is an elementary abelian p-group, or torsion free and divisible, 
or a decent torus.

Proof. By [13, Corollary 6.6], G is either an elementary abelian p-group or a divisible 
abelian group; further subdivision of the latter follows immediately from G being of 
Morley rank 1. �
Fact 2.4. A decent torus does not admit any non-trivial connected definable automorphism 
groups.

Proof. Let T be a decent torus and A a connected group acting on T . Since T is a 
divisible abelian group, its torsion part is the direct sum of p-tori, that is, finite direct 
sums of Prüfer p-groups Zp∞ for some primes p. Let P be the maximal p-torus of T , for 
some prime p. Obviously, P is a characteristic subgroup of T and therefore A leaves P
invariant as a set. For each n � 1 set Pn = {t ∈ P : tpn = 1}. Being characteristic finite 
subgroups of P , all Pn’s are centralised by A. Since P =

⋃
Pn, A also centralises P ; since 

the argument works for every prime p, A centralises the torsion part of T , and hence its 
definable hull which is equal to T by the definition of a decent torus. Thus, A = 1. �

The following is a corollary of Zilber’s Indecomposability Theorem [13, §5.4].
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Fact 2.5 ([13, Corollary 5.29]). Let H be a connected subgroup of G, and X be a (not 
necessarily definable) subset in G. Then [H, X] is definable and connected.

Fact 2.6 ([13, Corollary 9.9]). The derived subgroup of a connected solvable group is 
nilpotent.

Here are two results from the literature that deal with the case rk(V ) � 2 in Theo-
rem 1.

An action on a group is called minimal if the only improper definable subgroups left 
invariant under this action are the finite subgroups.

Fact 2.7 (Zilber) [13, Theorem 9.5]. Let G and V be abelian groups. If G acts on V
faithfully and minimally, then there exists an algebraically closed field K such that the 
action G � V is equivalent to the action B � K+ for some subgroup B in K∗.

Fact 2.8 (Deloro) [27]. Let G be a connected non-solvable group acting faithfully on a 
connected abelian group V . If rk(V ) = 2, then there exists an algebraically closed field K
such that the action G � V is equivalent to GL2(K) � K2 or SL2(K) � K2.

In fact, a theorem of Borovik and Deloro deals with our situation for rk(V ) = 3, 
however we will not need this result in our proof. A connected non-solvable group of 
finite Morley rank is called a bad group if all its definable connected solvable subgroups 
are nilpotent.

Fact 2.9 (Borovik–Deloro) [12]. Let G be a connected non-solvable group acting faithfully 
and minimally on an abelian group V . If rk(V ) = 3 and G is not a bad group, then there 
exists an algebraically closed field K such that V = K3 and G is isomorphic to either 
PSL2(K) ×Z(G) or SL3(K) ∗Z(G). The action is the adjoint action in the former case, 
and the natural action in the latter case.

Here are two results about groups acting on groups.

Fact 2.10 ([2, Proposition I.9.9]). Let H be a group of finite Morley rank, Q � H a 
solvable definable π-subgroup of bounded exponent and t ∈ H a π⊥ element. Then

CH(t)Q/Q = CH/Q(t).

The abelian group V and its subgroups will be written additively.

Fact 2.11 ([2, Corollaries I.9.11, I.9.14]). Let a finite elementary abelian 2-group D act 
definably on a connected abelian group V . Assume that V has no involutions. Then

V = CV (D) ⊕ [V,D].

In particular, CV (D) and [V, D] are connected.
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The following three results from our earlier paper [5] will be useful in this work as 
well.

Lemma 7.1 in [5] was stated under stronger assumptions on V ; however, the proof 
used only the fact that V is connected, abelian and has no involutions. So we state 
Lemma 7.1 in this stronger form:

Fact 2.12 ([5, Lemma 7.1]). Let V be a connected abelian group and E an elementary 
abelian 2-group of order 2m acting definably and faithfully on V . Assume m � n = rk(V )
and V contains no involutions. Then m = n and V = V1 ⊕ · · · ⊕ Vn, where

(a) every subgroup Vi, i = 1, . . . , n, is connected, has Morley rank 1 and is E-invariant.

Moreover,

(b) for each Vi, i = 1, . . . , n, is a weight space of E, that is, there exists a homomorphism 
ρi : E → {±1} such that

Vi = {v ∈ V | ve = ρi(e) · v for all e ∈ E}.

Fact 2.13 ([5, Corollary 1.3]). Let F be an algebraically closed field, and G a group acting 
faithfully on Fn as a group of automorphisms of the additive group of Fn. If GLn(F ) � G

then G = GLn(F ).

A 2-torus (that is, a divisible abelian 2-group) is a product of copies of Prüfer 2-groups 
C2∞ . The number of copies is called the Prüfer 2-rank of the 2-torus. If G is a group of 
finite Morley rank, then the Prüfer 2-rank of G is defined to be the Prüfer 2-rank of a 
maximal 2-torus in G. Since maximal 2-tori are conjugate in G (and have finite Prüfer 
2-ranks), the definition is independent of the choice of the maximal 2-torus.

Fact 2.14 ([5, Theorem 1.4]). Let G be a connected group acting on a connected abelian 
group V faithfully and irreducibly. If the Prüfer 2-rank of G is equal to the Morley rank 
of V , then V is a vector space over an algebraically closed field and the action G � V

is equivalent to GL(V ) � V .

A result of Loveys–Wagner [38] stated in the below form will be used for the torsion 
free case of our theorem.

Fact 2.15 (Loveys–Wagner) [13, Theorem A.20]. Let G be an infinite group acting on 
an infinite divisible abelian group V . If the action is faithful and G-minimal, then there 
exists an algebraically closed field F of characteristic 0 such that V is a vector space 
over F , G is definably isomorphic to a subgroup H of GL(V ), and the action G � V is 
equivalent to H � V .
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2.2. Generically multiply transitive actions on sets of Morley degree 1

A definable subset Y ⊆ X is said to be generic in X, if rk Y = rkX. Assume that 
a group G is acting on a set X of Morley degree 1 and that this action is generically 
sharply n-transitive for n � 1, i.e. G acts sharply transitively on a generic subset A
of Xn. Let πi denote the projection from Xn onto the i-th component for i = 1, . . . , n. 
Then each πi(A) is generic in X, and G acts on πi(A) transitively, therefore all πi(A)
are equal to the (only) orbit of G generic in X. We shall denote X∗ = πi(A). Note 
that G acts transitively and faithfully on X∗ and therefore acts faithfully on X by [11, 
Lemma 1.6].

Proposition 2.16. Under these assumptions, assume that n > 1. Then

(a) Denote the unique generic orbit in V m by A. Then A has Morley degree 1 and G is 
connected. Moreover, rkG = rkA = rk V m = mn.

(b) For all x ∈ X∗, the stabilisers stabG(x) are connected.

We shall refer to elements x ∈ X∗ as generic elements in X.

Proof. By assumption V is connected, hence so is V m. Observe that A is a generic subset 
in the set Xn of Morley degree 1 and therefore also has Morley degree 1. Since G acts 
on A sharply transitively, there is a 1 – 1 definable correspondence between G and A
and G also has Morley degree 1. This also shows that rkG = rkA = rk V m = mn – this 
proves (a).

If n > 2, (b) is an immediate consequence of (a): if x ∈ X∗, its stabiliser stabG(x) acts 
generically sharply (n − 1)-transitively on X. If n = 2, we apply to the sharp transitive 
action of stabG(x) on X the same argument as in (a). �
Proposition 2.17. Let H be a connected group acting definably on a connected elementary 
abelian p-group V (written additively). Assume that H has on V a generic orbit. Assume 
also that W = CV (H) is finite and that for a generic x̄ ∈ V = V/W , the centraliser 
CH(x̄) is connected.

Then W = 0.

Proof. By Fact 2.5, for a generic x̄ ∈ V , [CH(x̄), x] is a connected subgroup of the finite 
group W , hence trivial; if follows that CH(x̄) = CH(x).

Observe that O = xH is generic in V . Fix w ∈ W � {0}, then O ∩ (O + w) is generic 
in V because of the connectedness of V . Hence there exist generic elements y and z in V
with z = y + w and z = yh for some h ∈ H. But y + w = y, hence h ∈ CH(y) = CH(y), 
and z = yh = y, and w = 0. A contradiction. �
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2.3. Some actions of hyperoctahedral groups

We denote by Z2 the cyclic group of order 2 and define Σm = Z2 � Symm, the wreath 
product of Z2 and the symmetric group Symm. We denote by E the base group of the 
wreath product: E = Z2×· · ·×Z2, the direct product of m copies of the group Z2; it is an 
elementary abelian group of order 2m and could be seen as a vector space of dimension 
m over the field F2 with two elements. It is easy to see that E contains two sets of m
linearly independent elements which are invariant, setwise, under the action of Symm; 
we denote elements in one of these sets e1, . . . , em, then the other set is e1e, . . . , eme, 
where e = e1e2 · · · em.

The group Σm is called the hyperoctahedral group; it is the reflection group of type 
BCm.

Proposition 2.18. Assume that the hyperoctahedral group Σ = Σm acts faithfully and 
definably on a connected abelian group V (written additively) of Morley rank n with 
m � n; we assume, in addition, that V has no involutions.

Then m = n and the following statements are true.

(a) Set Ui = [V, ei]. Then

V =
n⊕

i=1
Ui,

where Ui are connected and we may assume without loss of generality that rkUi = 1
for all i = 1, . . . , n.

(b) ei inverts every element in Ui: uei = −u for each u ∈ Ui;
(c) ei centralises all Uj for j 
= i:

CV (ei) =
⊕
j �=i

Uj .

(d) The group Σ transitively permutes subspaces Ui, i = 1, 2, . . . , n.
(e) Every connected Σ-invariant subgroup of V equals 0 or V .
(f) CV (E) = 0 and therefore CV (Σ) = 0.

Proof. The first statement and the clauses (a), (b), (c), (d) easily follow from Fact 2.12. 
To prove (e), we will use Fact 2.11; we shall frequently use it in subsequent text without 
making specific references to it.

Indeed, let 0 
= W < V be a proper definable connected Σ-invariant subgroup of V . 
If all Ui intersect with W trivially, the group E centralises W and V = CV (E) ⊕ [V, E]
by Fact 2.11. Hence E acts faithfully on [V, E] and this contradicts with Fact 2.12.

Therefore at least one (and hence all, by part (d)) subgroup Ui intersects W non-
trivially. Since ei inverts every element in Ui, we have W∩Ui = [W, ei] hence is connected 
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by Fact 2.11, and, since Ui is a connected group of Morley rank 1, W ∩Ui = Ui, therefore 
Ui � W and W = V .

To prove (f), it suffices to consider the natural projection of CV (E) on the direct 
summands of 

⊕n
i=1 Ui. �

3. Proof of Theorem 1

In this section, we work in the setting of Theorem 1.
As it was pointed out in the first paragraph of Subsection 2.2, the generically sharply 

m-transitive action of G on V implies that G acts on V faithfully.
From now on, we use notation of Section 2.2; in particular, denote the unique generic 

orbit in V m by A.
Observe that G is abelian when m = 1, and hence we are done by a classical result of 

Zilber (Fact 2.7) in this case. From now on, we will assume that m � 2.

Lemma 3.1. If a = (v1, . . . , vm) is an arbitrary m-tuple in A, then the setwise stabiliser 
Σa in G of the set {±v1, . . . , ±vm} is

Σa = 〈ei, sσ | 1 � i � m, σ ∈ Symm〉 � Symm � (Z2)m,

where

ei(v1, . . . , vm) = (v1 . . . ,−vi, . . . , vm)

and

sσ(v1, . . . , vm) = (vσ(1), . . . , vσ(m)).

In particular, G contains copies of the hyperoctahedral group as a subgroup, and, more-
over, m = n.

Proof. Clearly the ei’s and elements of Symm stabilize {±v1, . . . , ±vm} setwise. We need 
to show that they lie in G. First we need an observation.

Claim. If ρ : V m → V m is a definable bijection that commutes with the induced action 
of G on V m, then ρ fixes A setwise.

Proof. If such a ρ exists, then A ∩ ρA is fixed by G setwise. Since G acts transitively 
on A, the intersection A ∩ ρA is either empty or equal to A. Since V is connected, the 
intersection cannot be empty, hence A ⊆ ρA. Now repeat the same thing with ρ−1 to 
get A = ρA. 
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Therefore, the following maps fix A setwise: for every 1 � i � m, ri : V m → V m, 
where ri(v1, . . . , vm) = (v1 . . . , −vi, . . . , vm); and for every σ ∈ Symm, sσ : V m → V m, 
where sσ(v1, . . . , vm) = (vσ(1), . . . , vσ(m)).

Hence, for every m-tuple a = (v1, . . . , vm) ∈ A and for every σ ∈ Symm, the m-tuples 
(±v1, . . . , ±vm), (vσ(1), . . . , vσ(m)) lie in A.

Now, by the sharp transitivity of the action of G on A and we obtain the result. To 
be more precise, for every a = (v1, . . . , vm) ∈ A and every 1 � i � m, there exists a 
unique involution ei ∈ G such that ei(v1, . . . , vm) = (v1 . . . , −vi, . . . , vm), and also, for 
every permutation σ ∈ Symm, there exists a unique sσ ∈ G such that sσ(v1, . . . , vm) =
(vσ(1), . . . , vσ(m)).

The isomorphism Σa
∼= Symm � (Z2)m follows from the sharpness of the action, and 

the equality m = n follows from Proposition 2.18. �
So, from now on n = m � 2. Now we fix one particular n-tuple v = (v1, . . . , vn) ∈ A

and denote v = v1. The involutions ei ∈ Σv are defined as in Lemma 3.1. We will 
be using Proposition 2.18 which we reproduce here but will be using without specific 
references to it.

Lemma 3.2. If Ui = [V, ei] then

V =
n⊕

i=1
Ui,

where Ui are connected and rkUi = 1 for all i = 1, . . . , n. Observe also that, for each i

• vi ∈ Ui;
• ei inverts every element in Ui: uei = −u for each u ∈ Ui;
• ei centralises all Uj for j 
= i:

CV (ei) =
⊕
j �=i

Uj .

• The group Σ = Σv transitively permutes subspaces Ui, i = 1, 2, . . . , n.

Also, in view of Proposition 2.18, we have the following fundamental observation:

Lemma 3.3. The action of G on V is irreducible, that is, the only definable G-invariant 
subgroups of V are 0 and V .

Proof. Let 0 < W < V be a G-invariant subgroup. Then W ◦ is a connected G-invariant 
subgroup, hence by Proposition 2.18(e), W ◦ = 0, that is W is finite. If V is torsion free, 
we immediately conclude that W = 0. Otherwise, being a connected group, G can act 
on W only trivially. But then W � CV (Σ) = 0 by Proposition 2.18(f). �
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Lemma 3.4. We can assume without loss of generality that V is an elementary abelian 
p-group for some odd prime p.

Proof. By Lemma 3.2, each Ui is connected and is of Morley rank 1, hence by Fact 2.3
each Ui is torsion free and divisible, or an elementary abelian p-group, or a decent torus. 
Since Σ acts transitively on the set of subgroups Ui, they necessarily have the same 
structure. If each Ui is a decent torus, then V is a decent torus, hence we contradict 
Fact 2.4. So we a left with two cases: V is torsion free or V is an elementary abelian 
p-group.

However, we can now easily prove that Theorem 1 holds if V is a torsion free group. 
Indeed, assume that we are in that situation. By Lemma 3.3, G acts on V irreducibly. 
Hence we can apply the Loveys–Wagner Theorem (Fact 2.15) and conclude that V is 
a vector space over an algebraically closed field F of characteristic 0. Notice that the 
Ui’s are non-zero vector subspaces; since they have Morley rank 1, they are inevitably of 
dimension 1 over F and rkF = 1. Hence V has dimension n over F and, by Fact 2.15, 
G is definably isomorphic to a subgroup of GLn(F ), and the actions are equivalent. 
Since rk(G) = n2 = rk(GLn(F )) and GLn(F ) is connected, we can conclude that G
is isomorphic to GLn(F ), and G � V is equivalent to GLn(F ) � V . This proves the 
torsion free V case. �

From now V is an elementary abelian p-group for an odd prime p. This remaining 
case will be proven by induction on n, and here we take care of the basis of induction.

Lemma 3.5. We can assume that n � 3.

Proof. We have already seen that, without loss of generality, we can assume that n 
= 1. If 
n = 2, the theorem follows from a result by Deloro (Fact 2.8) on groups acting on abelian 
groups of Morley rank 2. We only need to check that G is not solvable. If G is solvable, 
then the semidirect product V � G is a connected solvable group. Hence the derived 
subgroup of V �G is connected and nilpotent by Fact 2.6 and contains V by Lemma 3.3. 
The derived subgroup of Σ is nilpotent only when n = 2, since Σ is isomorphic to the 
dihedral group of order 8; in that specific case the commutator of Σ equals 〈e1e2〉 and, 
being of order 2 in a nilpotent group which also contains a p-group V , it centralises V , 
which means that the action of G on V is not faithful, a contradiction. �

We need to introduce some notation. For an arbitrary x ∈ V , denote

Ax = {(a1, . . . , an) ∈ A : a1 = x}

and

Bx = {(a2, . . . , an) : (x, a2, . . . , an) ∈ A}.
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Now note that, with the notation introduced in the first paragraph of Subsection 2.2, 
V ∗ = πi(A) for any i = 1, . . . , n. Moreover, being a generic subset in V , V ∗ has Morley 
rank n. Also note that Ax is non-empty if and only if x ∈ V ∗.

Lemma 3.6. In this notation, for every x ∈ V ∗,

rkAx = rkBx = n(n− 1).

Proof. For x ∈ V ∗, the sets Ax form a partition of A and all have the same Morley rank. 
Hence, for every x ∈ V ∗,

rkAx = rkA− rk V ∗ = n2 − n.

Since Ax is in one-to-one correspondence with Bx, the result follows. �
We return to analysis of one n-tuple v = (v1, . . . , vn) ∈ A; we denoted v = v1. We use 

notation introduced in Lemma 3.2. In addition, we denote H = CG(v) and W = CV (H).

Lemma 3.7. In this notation,

(a) H is connected and acts sharply transitively on Av and Bv.
(b) W is infinite.
(c) Every involution ei normalises H and W = CV (H).
(d) H centralises one of the subgroups Ui, i = 1, . . . , n.

Proof. (a) It is easy to see that H acts on Av and hence on Bv sharply transitively. Now 
the connectedness of H follows from Proposition 2.16.

(b) Since v ∈ W , W is non-zero. Assume that W is finite and consider V = V/W and 
the action of H on V . Observe, first of all, that the action of H on V is faithful. Indeed, 
if h ∈ CH(V ) then the commutator [h, V ] � W being finite and connected (because V
is connected) is trivial. Thus, h centralises V and therefore h = 1 because H < G acts 
on V faithfully. Take the image Bv in V

n−1; from comparing the ranks we see that Bv
is generic in V

n−1. In view of Proposition 2.16, we conclude that, for a generic x̄ ∈ V , 
CH(x̄) is connected. We can now apply Proposition 2.17 and conclude that W = 0, 
a contradiction.

(c) Each ei normalises 〈v〉, therefore it normalises H = CG(〈v〉) and W = CV (H).
(d) Let Wi = [W, ei] = W ∩Ui, i = 1, . . . , n. Since W is infinite by Clause (b), at least 

one of subgroups Wk in the decomposition W = W1 ⊕ · · · ⊕ Wn is infinite and, being 
a subgroup of the group Uk of Morley rank 1 and Morley degree 1, equals Uk. Hence 
Uk � W . �

Without loss of generality, we can assume that, in Clause (d) of Lemma 3.7, k = 1
and U1 � W .
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Now we study Ṽ = V/U1. Let

α : V −→ Ṽ

be the natural homomorphism. Notice that α preserves the action of the group H. Define 
B̃v ⊆ Ṽ n−1 as the image of Bv ⊆ V n−1 under the componentwise application of the 
homomorphism α.

Lemma 3.8. In this notation,

(a) rk B̃v = (n − 1)2. In particular, B̃v is generic in Ṽ n−1.
(b) H acts on Ṽ generically (n − 1)-transitively.

Proof. (a) Counting ranks of fibers of π, we get

rk B̃v � rkBv − (n− 1)

= n2 − n− (n− 1)

= (n− 1)2.

On the other hand, B̃v ⊆ Ṽ n−1 and the latter has rank (n −1)2. Hence rk B̃v = (n −1)2.
(b) Since G acts transitively on A, H acts transitively on Av and Bv, hence acts 

transitively on B̃v which is generic in Ṽ n−1 by part (a). �
Denote Q = CH(Ṽ ), K = CH(e1), and U = U2 ⊕ · · · ⊕ Un.

Lemma 3.9. Q is an abelian p-group of bounded exponent, e1 inverts every element in Q
and H = Q �K.

Proof. First, we can prove that Q is an abelian p-group. Indeed, by construction of Ṽ , 
we have [V, Q] � U1 � W � CV (H) � CV (Q), hence [[V, Q], Q] = 0 and by the Three 
Subgroups Lemma [[Q, Q], V ] = 0 and hence [Q, Q] = 1. V �Q is a nilpotent group, hence 
by Fact 2.1, p-elements and p⊥-elements in V �Q commute; it means that p⊥-elements 
in Q centralise V , and therefore equal 1, that is, Q is a p-group. Using CQ(V ) = 1 and 
Fact 2.1 one more time gives us that Q is of bounded exponent.

K ∩ Q = 1. Indeed consider some h ∈ CH(e1) ∩ Q and its action on the n-tuple 
(v, v2, . . . , vn). Since h centralises Ṽ = V/U1,

vh
i = vi + wi for some wi ∈ U1, i = 2, . . . , n.

On the other hand, since h centralises e1, it leaves invariant CV (e1) = U , therefore 
vh
i ∈ U and wi ∈ U1 ∩ U = 0, i = 2, . . . , n. We should remember also that vh = v by 

definition of H = CG(v). Therefore h fixes (v, v2, . . . , vn) ∈ A, hence h = 1.
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Now the involution e1 acts on Q without fixed points, therefore the action of e1 on Q
is by inversion by Fact 2.2.

The involution e1 centralises Ṽ = V/U1, hence [H, e1] � CH(Ṽ ), that is, e1 centralises 
H/Q. But Q is a 2⊥-group, therefore the centraliser of e1 in H/Q can be lifted to H, 
by Fact 2.10 applied with π = {p} and t = e1, that is, H = QCH(e1). But K = CH(e1)
intersects with Q trivially, hence H = Q �K. �
Lemma 3.10. K acts sharply generically (n − 1)-transitively on U .

Proof. Observe first that, by Lemma 3.8, K acts transitively on B̃v and therefore gener-
ically (n − 1)-transitively on Ṽ .

Next we use some basic algebra: the map γ : V −→ U defined by

γ(x) = 1
2(x + xe1)

is the projection of V onto U = CV (e1) with the kernel U1. Also, γ preserves the action 
of K.

Finally, since V = U1 ⊕ U and U is K-invariant, the restriction γ|U : U −→ Ṽ is a 
K-equivariant isomorphism. We denote by β : Ṽ −→ U the map inverse to α|U , then 
γ = β ◦ α.

The K-invariance of the map β means that K acts generically (n − 1)-transitively 
on U , so we only need to prove the sharpness on the action on B̃v. We argue the same 
way as in proof of Lemma 3.9. Let L = CK((v2, . . . , vn)) and h ∈ L. If h fixes the images 
ṽi in Ṽ , then vh

i = v+wi for some wi ∈ U1. But vi ∈ U and U is invariant under action 
of h ∈ K, hence all wi = 0 and h fixes (v, v2, . . . , vn) hence equals 1. �

We are now in position to apply the inductive assumption:

U has a structure of an (n − 1)-dimensional vector space over an algebraically closed 
field F and K acts on U as GLn−1(F ) in its natural action on Fn−1.

Lemma 3.11 (Identifications). We can choose a maximal torus R in K with the following 
properties:

• R = R2 × · · · ×Rn, where
• each Ri � F ∗ is a torus of Morley rank 1;
• ei ∈ Ri, i = 2, . . . , n;
• each Ri acts trivially on CV (ei), i = 2, . . . , n;
• [V, Ri] = Ui and CUi

(Ri) = 0, i = 2, . . . , n;

Proof. Recall that K � H and that by our choice of notation U1 � W = CV (H), 
therefore [K, U1] = 0. Generic (n − 1)-tuples in U � Fn−1 are linearly independent and 
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are bases of U as a vector space over F . Take for R the group of diagonal matrices with 
respect to the basis v2, . . . , vn, then all statements above follow from basic linear algebra 
and the fact that [K, U1] = 0. �
Lemma 3.12. G contains a torus R1 ×R2 × · · · ×Rn where each Ri � F ∗.

Proof. Now we pass the information obtained in Lemma 3.11 from H to G. As an imme-
diate corollary, we have CV (R) = U1, hence CV (K) = CV (H) = U1. Next, NH(U)◦ = K

by Fact 2.13.
By Lemma 3.2, the subspaces U1, U2, . . . , Un are transitively permuted by the group Σ. 

Therefore there is a Morley rank 1 torus R1 conjugate to R2, say, by action of Σ. Then by 
Lemma 3.11, [U1, R1] = U1 and [U, R1] = 0; in particular, R1 normalises U1 and U . Also, 
R1 normalises H = CG(U1) and therefore K = NH(U)◦. Consider the group L = R1K

and notice that R1 ∩K = 1. Now note that

T = NL(U1) ∩NL(U2) ∩ · · · ∩NL(Un) = R1 ×R

is a torus of rank n. �
Recall that by Lemma 3.3, G acts on V irreducibly, hence we can apply Fact 2.14 and 

complete the proof. �
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