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A B S T R A C T   

Concrete is a material that loses water and changes shape while hardening due to its structure. 
Over time, this water loss results in some shrinkage of the hardened concrete, referred to as 
drying shrinkage. In addition, water loss of concrete also causes the formation of various cracks. 
The aggregate used in concrete plays an important role in the shrinkage and cracking of concrete. 
The focus of this study is to accurately estimate the amount of crack width and drying shrinkage 
over time after the substitution of fine aggregates with other types of aggregates (consisting of 
various industrial by-products or wastes at different percentages) in the concrete mortar. For this 
purpose, various experimental results of the ‘substituted fine aggregate concrete mortars’ were 
converted into a data set. Following this a model was developed to predict the drying shrinkage 
and crack width of concrete mortars. The machine learning model was trained with the mea
surement results of 60-day drying shrinkage and crack widths of concrete mortars with different 
proportions of bottom ash (BA), granulated blast furnace slag (GBFS), fly ash (FA), and crushed 
tiles (CT). To enhance the detection/prediction capability of the model, the model hyper
parameters were optimized. It is observed that the developed model was able to detect the drying 
shrinkage and crack width with an accuracy exceeding 99.6 %. In addition, the physical prop
erties such as grain shape (angular or round) of components like fine aggregates may be effective 
for improved performance of the machine learning models in predictions of the drying shrinkage 
values or drying shrinkage cracking widths.   

1. Introduction 

In reinforced concrete structures, the durability of concrete has major impacts on strength and stability of the structure, in pro
tection from corrosion for steel reinforcements, and in service life and overall performance of the structure. One of the key components 
that has a big impact on the durability of the concrete is the type of aggregate used in the concrete mortar. Along with the de
velopments in the production industries, waste production has also increased to elevated levels, and researches have focused on 
consumption of the industrial wastes through recycling them into useful raw materials and products for other industries. In this 
context, in the construction industry, the use of industrial wastes as aggregates in concrete mortars has increased significantly. Drying 
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shrinkage and cracks that occur as a result of drying of concrete are highly affected by the contents of the aggregate. Until recent years, 
usually, laboratory experiments have been carried out to observe and record the drying shrinkage and widths of cracks in concrete 
mortars with different compositions of aggregates. In fact, in recent years thanks to the developments in Artificial Intelligence and 
Machine Learning, the results of the previous experiments can be used to develop models that can successfully and accurately estimate 
these artifacts without the need to conduct new experiments for every new case. This innovative approach is very time and cost 
efficient when compared with the previous one. In this sense, in recent years there have been many studies on utilization of supervised 
machine learning for this purpose. In this scope, this study focused on the prediction of the crack width and drying shrinkage when 
alternative aggregates such as waste or industrial products replace fine aggregates in concrete mortars. Experimental methods allow 
testing a limited number of products by human hands and require a significant amount of time and cost. However, today’s technology 
makes it much easier to generate new information by using already available experimental test data. For instance, the dataset used in 
the study is formed based on the experimental studies carried out in Bilir [1] and includes several chemical properties of fine aggregate 
concrete mortars consisting of, granulated blast furnace slag (GBFS), fly ash (FA), bottom ash (BA), and crushed tiles (CT) along with 
the measurements of crack widths and drying in concrete when these four aggregates were used in different replacement ratios of fine 
aggregates. Based on this dataset, in our study, a set of supervised machine learning models were trained and evaluated. The results 
have demonstrated that machine learning models can be very efficient in estimation of the crack width and drying shrinkage, and 
hyperparameter optimization contribute to the increase of overall efficiency of the model. 

2. Literature review 

Concrete is a building material that contains water, aggregate, and cement as the main material and stands out with its durability. 
Water-cement ratio, aggregate type, and the type of cement (acting as a hydraulic binder) have a big impact on ensuring the durability 
of the concrete. Various methods have been developed to improve the factors affecting the strength of concrete mortars. One of these is 
the diversification of coarse and fine aggregates used in the concrete mortar. Today, in addition to natural aggregates such as stone, 
sand, gravel, volcanic ash, soil, and similar substances, industrial products and wastes such as granulated blast furnace slag, fly ash, 
and silica fume have started to be used as concrete aggregates. In addition, researchers aim to increase aggregate options and ensure 
sustainability by grinding various resources in nature and evaluating resources such as waste tires, glass, ceramics, tiles, and recycled 
aggregates. Research on the impacts of aggregates in concrete mortars has generally focused on strength, workability, and sustain
ability. In the last 20 years, with the increase in mechanization and industrial products, the use of industrial wastes as aggregate types 
has also increased, and studies were carried out on the consumption of waste products to prevent environmental pollution. In addition, 
considering the possibility of access to raw materials, studies on various aggregate types have been the subject of many studies in the 
literature [2–27]. 

Concrete is a material that exhibits different mechanical properties according to the material properties it contains. Ratios of 
various aggregates, admixtures, and binder cement used in concrete mortars are the main factors that are effective in determining the 
properties of concrete such as workability, strength, shrinkage, and cracking. The concrete mortars produced lose the water they 
contain during solidification and shrink in volume, leading to shrinkage of the concrete and the formation of cracks. The formation of 
shrinkage cracks makes concrete open to external factors and reduces its durability and especially leads to acceleration of rein
forcement corrosion [28,29]. To prevent shrinkage cracks in concrete, it is recommended to add materials such as fibers, 
shrinkage-reducing admixtures, polypropylene fibers, super absorbent polymers, expansive additives, and lightweight aggregates 
[29–39]. Drying shrinkage and cracks seen with the drying of concrete are highly affected by the contents of the concrete aggregate. 
The effects of different aggregates on drying shrinkage and cracks have been investigated in the literature. Studies in this field can be 
summarized as follows: Zielinski and Kaszynska conducted experimental research on self-compacting normal and lightweight concrete 
and observed better drying shrinkage in lightweight concrete compared to normal-weight concrete [40]. Güneyisi et al. found that the 
use of nano-silica and treated lightweight aggregates can reduce drying shrinkage by up to 23 % in lightweight aggregate concrete 
mortar from fly ash [41]. Lee et al. reported that the aggregate volume function was effective in drying shrinkage cracks when dune 
sand and crushed sand were used as fine aggregates in the concrete mortar [42]. Yu and Zhu observed that the use of small rubber in 
rubberized concrete mortar can increase the porosity and drying shrinkage of concrete [43]. Gong et al. investigated ceramsite 
concrete mortars with shrinkage reducer and polypropylene fiber material and found that they were effective in reducing drying 
shrinkage for both single and combined use cases [44]. Maghfouri et al. found that the use of a high proportion of palm oil shells as 
aggregate resulted in an effective increase in drying shrinkage [45]. Zhang et al. found that the use of fly ash as fine aggregate 
consistently reduced the drying shrinkage compared to conventional concrete [46]. Hung et al. observed that the addition of fly ash 
cenospheres as aggregate to high-strength lightweight concrete improved drying shrinkage [47]. Huynh et al. found that the use of 
dune sand instead of fine aggregate in concrete increased the drying shrinkage, while the addition of a portion of ground granulated 
blast furnace slag instead of cement improved the drying shrinkage effect [48]. Nasser et al. found that the use of solid waste 
incineration bottom ash in different proportions instead of natural aggregate in concrete initially increased drying shrinkage and 
improved autogenous shrinkage as a result of increasing moisture content [49]. Shi et al. observed that the use of iron waste powder 
and sand in concrete reduced drying shrinkage due to the pore refining effect of iron waste [50]. 

Developing technology has enabled many developments in the field of structural engineering. The most important reason for this is 
the development of artificial intelligence technologies. While many engineering problems today require various expertise and 
knowledge from humans, artificial intelligence technologies can reach this level of expertise in a very short time with data-based 
knowledge. Machine learning is an artificial intelligence method in which a machine is trained with a data set and given the ability 
to predict new data based on past training experience. The diversity of sources seen in building materials is an area where experience is 
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gained based on experimental observation results that require a long process. Machine learning techniques are trained with the results 
obtained from experiments on building materials, allowing the prediction of new information based on old experimental results. In 
studies on concrete using machine learning and its sub-branches, prediction of values such as creep behavior, compressive and tensile 
strength, carbonation depth, crack repair rate, crack width, crack propagation, crack detection, and mechanical properties have been 
investigated [51–63]. Some of the studies can be summarized as follows: Liang et al. created models that predict the creep behavior of 
concrete with ensemble machine learning algorithms and observed that predictions can be made that are compatible with the logic of 
parameters affecting the creep of concrete in behavior prediction [51]. Ren et al. proposed a deep fully convolutional neural network 
for the detection of concrete cracks, providing higher accuracy than some alternative and traditional methods for crack segmentation 
in tunnel monitoring [52]. Feng et al. used concrete compression test data to predict the compressive strength of concrete and 
developed a prediction model with an accuracy of 98 % with the Adaboost algorithm [53]. Bui et al. used an artificial neural network to 
predict the tensile and compressive values of high-performance concrete and created a hybrid expert system that makes effective 
predictions using the modified firefly algorithm for neural network weights in improving the performance of the model [54]. Asteris 
et al. tried the hybrid ensemble surrogate machine learning method using experimental data to predict the compressive strength of 
concrete and achieved higher accuracy compared to different traditional machine learning methods [55]. Behnood and Golafshani 
collected and used data from publications on the properties of concrete in which waste foundry sand was partially or completely used 
instead of fine aggregate, and developed models that estimate the mechanical properties of concrete (compressive strength, modulus of 
elasticity, flexural strength, splitting tensile strength) with the M5P algorithm [56]. Chaabene et al. examined various machine 
learning methods such as artificial neural network, support vector machine, decision trees, and evolutionary algorithms in predicting 
the mechanical properties of concrete, and presented the performance analysis and critical approach of the models [57]. Nunez and 
Nehdi used machine learning to determine the carbonation depth in concrete containing various mineral additives such as metakaolin, 
silica fume, and fly ash and using recycled aggregate, and determined that the gradient boost regression tree model showed a good 
prediction performance [58]. Liu et al. created a model using artificial neural networks (ANN) to predict the carbonation depth of 
recycled aggregate concrete, tried a hybrid method by optimizing the ANN with various swarm intelligence algorithms, and achieved a 
better performance than the independent artificial neural network [59]. Lou et al. used machine learning methods in self-healing 
concrete to create models that predict the repair rate of cracked parts in concrete and compared the performance of the methods 
used [60]. Yuan et al. developed machine learning models to investigate the effect of various parameters on the self-healing ability of 
cementitious composites, evaluated the models using Shapley additive annotation (SHAP), and observed that the crack width before 
healing has a significant effect on the prediction of the width after healing and that additional parameters can be used in healing 
prediction [61]. Dorafshan et al. investigated the performance of edge detectors in image-based crack detection of concrete structures 
and proposed a hybrid method in which deep convolutional neural networks and edge detectors were used together [62]. Bayar and 
Bilir used the machine learning method to create images of cracks in concrete and predicted the crack geometry, crack direction and 
propagation with the Voronoi diagrams they obtained [63]. In this study, 60-day experimental results of concrete produced by 
replacing the fine aggregates used in the concrete mortar with granulated blast furnace slag (GBFS), fly ash (FA), bottom ash (BA), and 
crushed tiles (CT) at different ratios were taken and used in machine learning training and an artificial intelligence model was 
developed to predict the drying shrinkage and crack width of concrete together. For this purpose, the results of the experimental study 
conducted by Bilir [1] were converted into a data set. Mortar samples were taken from the obtained concrete mortars and their tensile 
and compressive strengths were tested in 28 days of flexure [1]. The ring test was applied for free drying shrinkage for 60 days and the 
resulting crack widths were measured with an optical crack microscope. The following section elaborates on the dataset prepared 
based on Bilir [1] and model development and evaluation strategies applied for the estimation of drying shrinkage and crack widths. 

3. Methodology 

The methodology implemented in this research involved two stages, i.) testing of several machine learning algorithms for esti
mation of drying shrinkage and crack width of concrete, and ii.) hyperparameter optimization of the best-performing algorithm to 
achieve even better accuracy rates in estimation. In this section, a general overview of machine learning is presented, several machine 
learning algorithms used in the study are summarized, and the hyperparameter optimization concept is explained briefly. 

3.1. Machine learning 

Artificial Intelligence (AI) refers to the ability of machines, a computer, and software with a similar function, to create decision- 
making mechanisms that mimic the human brain. Machine learning is a type of artificial intelligence that allows machines to make 
inferences by training them with data. It offers two types of inference goals. The machine learning model can perform classification as 
well as numerical predictions expressed as regression problems [64,65]. When faced with a classification problem, the machine 
classifies the data into certain categories/classes according to the characteristics of these classes. For regression problems, machine 
learning makes it possible to establish a numerical relationship between the inputs and outputs of the data, and the inferential model it 
develops can make numerical predictions for the new inputs. Machine learning is divided into various sub-branches. In broad terms, 
these are as follows: Supervised learning is a branch of machine learning in which inputs and outputs are used to train the machine and 
the machine can predict the outputs for each new input with the knowledge gained. Unsupervised learning aims to predict the outcome 
(i.e. categories of data) without the outputs in a data set, by searching for a relationship between the inputs to each other. In other 
words, unsupervised learning seeks an order among inputs [66]. Deep learning is a machine learning method that mimics the human 
brain with multi-layer neural networks using large amounts of data [69]. 

Reinforcement learning is another branch of AI that acts on actions and targets new actions based on previous actions, as seen in 
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robotic technology [64,67]. An example of reinforcement learning is when a telephone user changes his/her location to get a better 
signal and does not have any information about the new location and does not choose the locations where he/she finds the phone signal 
bad according to his/her previous experiences [68]. Here, the user aims to obtain the correct location by performing a kind of mapping 
process for the location with negative results. 

3.2. Regression algorithms 

Regression is a machine learning method, successfully implemented in statistics for many years, for establishing a connection 
between dependent variables(outputs) and independent variables(inputs) in data. Most well-known regression methods include linear 
regression for the estimation of numerical dependent variables, and logistic regression for the estimation of categorical dependent 
variables. In most cases, in machine learning models developed with regression algorithms, the effect and relationship of inputs on 
outputs can be analyzed and the output of each new input can be numerically predicted. In regression problems, besides foundation 
algorithms such as linear, nearest neighbor, and decision tree, ensemble algorithms such as Adaboost, Lightgbm, Catboost, Xgboost, 
and Bagging can also be used. The algorithms used in this study are briefly described below. 

Decision Tree: Decision Tree Regressor builds a tree-like structure based on the attributes in the data and the predictions cor
responding to these values, called nodes. The tree continues to grow according to a predefined stopping criterion from the terminal 
nodes to the root node, which is reached with the best prediction. This structure of leaves, branches, and roots is easy to understand and 
makes it easy to find the relationship between a normal variable and a high-impact variable [70–72]. 

K-Nearest Neighbors: K-Nearest Neighbors Regressor is a machine learning algorithm that aims to find K instances in a data set 
that are the closest distance from a random sample [73]. The performance of this algorithm is related to the setting of the value of K, the 
number of nearest neighbors. The distance between the samples is set by the optimal choice of the value of K and the weight vector 
[74]. 

Lasso: Lasso Regressor is an algorithm that aims to obtain a good predictor even for rare features by minimizing the values in the 
data [75]. This minimization is intended to reduce the complexity of the data and is functional in models with many attributes as input. 
It deals with the elimination of some features to avoid overfitting [76]. 

Ridge: Ridge Regressor is a method used to eliminate multicollinearity when there is a high correlation between two or more 
independent variables in the data. It identifies the attributes that have little effect on the data and reduces their coefficients [76]. In 
regression analysis, it aims to reduce standard errors by taking deviations into account [77]. 

ElasticNet: ElasticNet regressor is a machine learning algorithm that aims to reduce the sum of errors. It is a regressor that combines 
the two methods by taking the coefficients of the equations used in the lasso and ridge regressors. In its simplest form, it combines the 
lasso algorithm’s method of removing low-impact features and the ridge algorithm’s method of reducing the coefficients of insig
nificant features [76]. 

Linear Regression: Linear regression is a machine learning algorithm that aims to establish a linear relationship between dependent 
and independent variables. In its basic logic, the output values to be predicted are considered as a linear line, and a linear relationship 
is established between inputs and outputs by adding weights to the inputs in the data. While the output values (y’s), which are 
dependent variables, are expected to be continuous, the input values (x’s), which are independent variables, can be continuous or 
discrete [78, 79]. 

Bagging: A bagging regressor is a machine learning method that multiplies the dataset by adding more training data to produce a 
prediction model and determines the final ensemble prediction by averaging the individual predictions. It is stated that it is a powerful 
algorithm for solving problems arising from overfitting, increasing prediction success and data variability in regression problems [80]. 

Random Forest: It is an ensemble algorithm that creates decision trees using randomly selected feature subsets in the data and 
obtains results by averaging the predictions. One of the main problems of decision tree algorithms is overfitting. To keep this situation 
under control and produce a more accurate prediction, bootstrapped samples, decision trees, and randomly selected data features are 
used [79,81]. 

AdaBoost: The AdaBoost (Adaptive Boosting) algorithm is essentially an ensemble algorithm that aims to produce a stronger model 
by bringing weak students together. Equal weights are given to the initially trained data points. Later, the performance of the model 
can be improved by updating and adjusting these weights according to incorrect predictions [78]. 

XGBoost: It is a gradient boosting algorithm called extreme gradient boosting, which is a more advanced version of the gradient 
boosting algorithm based on ensemble learning [82]. It is advantageous compared to other algorithms in terms of feature selection and 
convergence speed [83]. 

LightGBM: The LightGBM algorithm is a machine learning method for gradient boosting, called light gradient boosting machine. It 
was developed by using exclusive feature bundling and gradient-based one-side sampling methods together [84,85]. It has outstanding 
advantages over other algorithms in issues such as missing data, distributed computing, and parallelism [86]. 

CatBoost: It is a machine-learning algorithm developed for enhancing gradient boosting [87,88]. Overfitting, which is usually seen 
in gradient boosting algorithms, is an issue that can be overcome in this algorithm. Compared to similar gradient boosting algorithms 
such as LightGBM and XGBoost, it overcomes the overfitting problem thanks to its training speed and solves target leakage with 
sequential boosting [89]. 

3.3. Hyperparameter optimization 

Machine learning algorithms have different mechanisms that express the relationship between the dependent and independent 
variables in data. The coefficients of the functions in these represent the model parameters. During machine learning, model pa
rameters are optimized to increase performance by using various optimization techniques. Unlike model parameters, hyperparameter 
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is a term that refers to the various characteristics of machine training, such as the process and speed of training, which are determined 
before machine training. By optimizing the hyperparameters, overfitting and underfitting situations can be overcome and the accuracy 
performance of the machine learning prediction model can be increased. There are various optimization methods and tools for 
hyperparameter optimization. Optuna is one of the well-recognized hyperparameter optimization tools developed for this purpose 
[90] and is implemented in our study. The flowchart of prediction model generation with the CatBoost algorithm and Optuna for the 
concrete data set used in the study is given in Fig. 1. 

3.4. Model metrics 

Machine learning algorithms cannot be clearly distinguished as better or worse than each other. Depending on the type of problem 
and the characteristics of the data, the algorithm that provides high accuracy in machine learning may vary. Therefore, it is necessary 
to test as many algorithms as possible to achieve a good model performance. The R-squared value is used as a measure of success in 

Fig. 1. Optimized CatBoost Model flowchart for training data.  
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regression models. This value, expressed as the variability ratio of the regression, symbolizes the power of regression analysis and 
shows how much the total variation in the machine learning model can be explained. In regression problems, besides the R-squared 
value, values such as Mean Squared Error (MSE), root mean square error (RMSE) and mean absolute error (MAE) are also helpful 
metrics in interpreting the regression problem. The calculation of, R-squared (R2) is shown in Equation (1), mean absolute error (MAE) 
is shown in Equation (2), mean square error (MSE) is shown in Equation (3), and root mean square error (RMSE) is provided in 
Equation (4). 

R2 =1 −

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − yi)

2
(1)  

MAE=
1
N

∑N

i=1
|ŷi − yi| (2)  

MSE=
1
N

∑N

i=1
(ŷi − yi)

2 (3)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (4)  

In the equations, the number of samples is denoted as N, and the observation value and their mean are denoted by yi and yi, 
respectively, and the predicted value is denoted by ŷi. 

3.5. Model evaluation 

Different methods are used to validate machine learning models. In this study, we used the k-fold cross-validation method proposed 
by Geisser and Eddy [91,92], which is based on the principle of sample reusability and has a simple and straightforward structure. This 
method divides the data into k parts and uses k-1 parts as training data, while each part is used for validation. For the models to be used 
in the study, the data is divided into 10 folds and each fold is used separately as validation data. The remaining 9 pieces out of each fold 
are taken as training data for the model. The process is performed 10 times in total for all folds and 10 different R-squared values are 
obtained. The accuracy of the model is determined by taking the average R-squared value of 10 folds. A visual summary of the k-fold 
cross-validation method is shown in Fig. 2. 

4. Results 

In this study, a machine learning model was developed for a dataset consisting of the fine aggregates’ replacement ratios of concrete 
mortars with different aggregates, drying time, average tensile and compressive strengths, drying shrinkage, and crack widths. In the 
developed model, various regression algorithms were tested to define a model that predicts drying shrinkage and crack width at the 
same time. 

4.1. Dataset and Exploratory data analysis 

Various properties of fine aggregate concrete mortars consisting of granulated blast furnace slag (GBFS), fly ash (FA), bottom ash 
(BA), and crushed tiles (CT), of which experimental studies were carried out by Bilir [1], were used in this study. In his study [1], Bilir 
recorded the crack widths and drying shrinkage that would occur in concrete if these four aggregates were added to the concrete 

Fig. 2. K-fold cross-validation method.  
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mortars in different replacement ratios of fine aggregate, with experimental measurements and observations for a period of 60 days. In 
the data, 60-day drying shrinkage obtained by applying the ring test to Portland cement mixtures, average crack widths measured 
according to drying time, and 28-day average tensile and compressive strengths determined according to addition rates were used. The 
physical and chemical properties of the aggregate types used in the study are shown in Tables 1 and 2, respectively. 

The data consisted of 2640 lines. The characteristics of the data is summarized in Table 3. A sample of 11 lines of the data used in 
the study is provided in Table 4. The correlation matrix of the data set is given in Table 5 and the correlation chart is shown in Fig. 3. 

4.2. Evaluation of machine learning (ML) algorithms 

In our study, a machine learning model that predicts drying shrinkage and crack width together from the concrete data set con
sisting entirely of numerical data was developed. In the model generation process, the popular machine learning algorithms of the 
Scikit-Learn package [93], along with some other ML packages were evaluated using 10-fold cross-validation, and the model with the 
highest accuracy (R-squared score) was then retrained for hyperparameter optimization with Optuna. The calculated performance 
indices of the algorithms tested in the data set prior to hyperparameter optimization are given in Table 6. The table includes the highest 
R-squared score among 10-folds (Max-R2), the average of R-squared scores of 10-folds (Mean-R2), average mean absolute error (MAE), 
mean squared Error (MSE) and root mean square error (RMSE) values. 

Considering the R-squared values given in Table 6, hyperparameter optimization was applied to the best-performing algorithm, 
CatBoost. In this study, Optuna Hyperparameter Optimization is used for optimizing the hyperparameters of the CatBoost algorithm. 
The hyperparameters (and their definitions) used in the optimization process are provided in Table 7. 

The optimum values of the hyperparameters, the new mean R-squared value of 10-folds after hyperparameter optimization, and the 
maximum R-square value at which the highest value was obtained among the folds are given in Table 8. Although the achieved ac
curacy with CatBoost was very high, it is observed that the mean accuracy rate can be further enhanced through hyperparameter 
optimization. 

5. Discussion 

In this study, the machine learning model was developed using a data set of experimental measurements of various concrete 
mortars to accurately estimate the drying shrinkage and crack width. For this purpose, 60-day measurement data of concrete speci
mens produced by adding different proportions of fine aggregates consisting of granulated blast furnace slag (GBFS), bottom ash (BA), 
fly ash (FA), and crushed tiles (CT) to concrete mortars along with obtained drying shrinkage and crack width is used for supervised 
machine learning training. In the model, the drying time, average tensile and compressive strengths of the concrete specimens, and the 
addition rates of the fine aggregate in the concrete mortars at 10 % increments between 0 and 100 % were used as the input data. The 
developed model jointly predicts the drying shrinkage and crack width of concrete specimens. In developing the model, 12 different 
regression algorithms were tested (Table 6) and the highest accuracy was observed for the CatBoost regressor with a mean R-squared 
value of 0.9959. Mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and mean R-squared error 
(mean-R2) scores of the algorithms used in the study were calculated as comparison metrics. These MAE, MSE, and mean R-squared 
scores are presented in Figs. 4-6, respectively. 

As shown in the MAE values in Fig. 4, it can be seen that the lowest value was obtained with the Bagging and XGBoost models. The 
mean absolute error values were very close and low, especially in the ensemble algorithms, except for the AdaBoost model. Adaboost 
algorithm works on determining the correct weight coefficients to strengthen weak students in education. In the Adaboost model, since 
the data points were initially given equal weights and these weights were updated according to incorrect predictions, the mean ab
solute error value was higher compared to other composite algorithms. Models in which the error rates were close to each other and 
had low absolute errors belonged to Decision Tree, LightGBM, Bagging, Random Forest, XGBoost, and CatBoost algorithms. 

According to the MSE values in Fig. 5, the lowest MSE value was observed for the model trained with the CatBoost and XGboost 
algorithms. Among the models trained with XGboost and Bagging algorithms (i.e. the models with the lowest MAE values), CatBoost 
and XGboost have given the lowest MSE value, while the Bagging model gave the third lowest mean square error. 

The CatBoost algorithm had very low MAE and MSE values. In fact, the training with XGBoost algorithm resulted in better MAE 
rates with a minor positive difference (i.e. lower value). The MSE values of these two algorithms were the same. However, considering 
the average R squared (R2) and max R2 values, CatBoost was the algorithm that provided the most accurate results. There are different 
points of view in the selection of the evaluation metrics for the regression models. While MAE takes the absolute value of the difference 
between the predicted values and the real value in the data, MSE follows a method that is more sensitive to outliers and penalizes the 
large errors more heavily by using the square of this difference. In addition, when there is optimization in the process MSE can be 
regarded as a more mathematically more convenient metric. In this sense, MSE distinguishes incorrect predictions more sensitively 
than MAE and can show the error more clearly and squarely. Looking at the MSE values, XgBoost and CatBoost algorithms showed the 
exact same error rates. The other evaluation criterion, R2 value expresses the model’s adaptability to explain the data. By focusing on 
all 3 metrics MAE,MSE and R2 in a holistic manner, the CatBoost appears as the most accurate model. Accordingly, considering all the 
evaluation criteria, the CatBoost algorithm is determined as the best model. 

When the mean R-squared scores in Fig. 6 are examined, it is seen that Random Forest, XGBoost, Bagging, Decision Tree, and 
CatBoost algorithms achieve an accuracy exceeding 99 %, which can be regarded as an excellent prediction accuracy. With hyper
parameter optimization, the performance of the CatBoost regressor model, which has the highest mean R-squared score, also increased 
where the accuracy level (mean-R2) reached 99.66 %. 

In this study, the Catboost algorithm hyperparameters were optimized and a maximum R-squared value of 0.9980 was obtained 
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Table 1 
Fine aggregate chemical properties.   

SiO2 Al2O3 Fe2O3 CaO MgO SO3 MnO TiO2 P2O3 K2O Na2O Free Cl− CT Undetermined 

(%) 

GBFS 35.09 17.54 0.70 37.79 5.50 0.66 0.83 0.68 0.37 0.60 0.30 – – – 
FA 58.69 25.10 5.80 1.49 2.22 0.12 – – – 4.04 0.59 0.013 1.28 – 
BA 57.90 22.60 6.50 2.00 3.20 0.60 0.09 57.90 22.60 6.50 2.00 – – – 
CT 50.99 13.76 5.025 10.64 – – – – – 2.115 0.6 – – 13.02  
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among the 10 folds of the 10-fold cross-validation model, as shown in the results in Table 8. Accordingly, the experimental values of 
drying shrinkage and crack widths in the fold, Graphs of experimental values, and model prediction values of drying shrinkage and 
crack widths according to aggregate replacement ratios for the fold where the maximum R-squared value was obtained are given 
below. For GBFS aggregate, drying shrinkage is shown in Fig. 7, and experimental values and model-predicted values graphs of crack 
widths are shown in Fig. 8. Drying shrinkage and crack width graphs of the experimental values and model-predicted values of the 
same aggregate according to drying times are given in Figs. 9 and 10, respectively. 

When Figs. 7 and 8 are examined, it is seen that the developed optimized model generates predictions that almost overlap with the 

Table 2 
Fine aggregate physical properties.   

GBFS FA BA CT 

Loose unit weight (kg/m3) 1052 870 620 – 
Compressed unit weight (kg/m3) 1236 1110 660 – 
Unit weight 2.08 1.80 1.39 1.9 
Water absorption rate (%) 10 – 12.10 18 
Organic material (color) Light yellow – Light yellow – 
Loss on Ignition (%) 9.4 – 2.40 – 
Light particles (%) 3 – 7.00 –  

Table 3 
Descriptive statistics of the dataset.  

Feature Drying Time Replacement Ratio Tensile Strength Compressive Strength Drying Shrinkage Crack Width 

Day % N/mm2 N/mm2 – mm 

Minimum variable 1 0 1.66 12.10 0 0 
Maximum variable 60 100 10.34 46.77 0.0196 2.25 
Mean 30.5 50 5.023 29.56 0.0047 0.4887 
Standard deviation 17.32 31.63 2.098 9.04 0.0037 0.6105 
Variance 299.9 1000 4.399 81.62 1.39E-05 0.3726 
25 % 15.75 20 3.408 21.46 0.0023 0 
50 % 30.5 50 4.645 30.11 0.0036 0.1035 
75 % 45.25 80 5.85 36.88 0.0063 0.9433  

Table 4 
First 11 rows of the dataset.  

Drying Time (day) Replacement Ratio (%) Tensile Strength (N/ 
mm2) 

Compressive Strength (N/ 
mm2) 

Drying Shrinkage Crack Width 
(mm) 

1 0 5.41 40.27 0.000105 0 
1 10 5.1 37.53 0.000235 0 
1 20 4.65 32.17 7.37E-05 0 
1 30 5.2 38.89 0.000277 0 
1 40 5.4 41.85 0.000428 0 
1 50 4.42 29.66 0.000105 0 
1 60 3.61 22.60 0.000358 0 
1 70 3.89 30.36 0.000267 0 
1 80 3.43 27.33 0.000305 0 
1 90 3.34 23.94 0.000249 0 
1 100 3.19 21.46 0.000265 0  

Table 5 
The correlation matrix.   

Drying Time 
(DT) 

Replacement Ratio 
(RR) 

Tensile Strength 
(TS) 

Compressive Strength 
(CS) 

Drying Shrinkage 
(DS) 

Crack Width 
(CW) 

Drying Time (DT) 1 2.53E-16 − 6.25 E− 16 2.96 E− 16 0.3065 0.6008 
Replacement Ratio 

(RR) 
2.53 E− 16 1 − 0.3678 − 0.8756 0.2375 − 0.3578 

Tensile Strength (TS) − 6.25 E− 16 − 0.3678 1 0.2175 0.4287 0.1448 
Compressive Strength 

(CS) 
2.96 E− 16 − 0.8756 0.2175 1 − 0.3251 0.3158 

Drying Shrinkage 
(DS) 

0.3065 0.2375 0.4287 − 0.3251 1 0.3883 

Crack Width (CW) 0.6008 − 0.3578 0.1448 0.3158 0.3883 1  
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Fig. 3. The correlation chart.  

Table 6 
R-squared scores of regression algorithms for the sample data set.  

Regressor Algorithm MAE MSE RMSE Max-R2 Mean-R2 

Lasso 0.1700 0.0975 0.2224 0.2560 0.2365 
ElasticNet 0.1686 0.0960 0.2206 0.2568 0.2398 
Ridge 0.1684 0.0955 0.2194 0.5206 0.4733 
Linear Regression 0.1684 0.0954 0.2197 0.4992 0.4782 
AdaBoost 0.1285 0.0518 0.1570 0.8098 0.7654 
K-Nearest Neighbors 0.0447 0.0302 0.1261 0.9190 0.8810 
LightGBM 0.0137 0.0025 0.0335 0.9944 0.9896 
XGBoost 0.0079 0.0011 0.0232 0.9945 0.9913 
Decision Tree 0.0087 0.0032 0.0332 0.9942 0.9917 
Bagging 0.0079 0.0022 0.0292 0.9970 0.9932 
Random Forest 0.0080 0.0016 0.0267 0.9981 0.9946 
CatBoost 0.0093 0.0011 0.0242 0.9982 0.9959  

Table 7 
CatBoost Regressor Algorithm hyperparameters [94].  

Hyperparameter Definition 

depth Optimum depth limit of the decision tree 
learning_rate Learning rate used to reduce gradient step 
iterations Maximum number of trees 
l2_leaf_reg L2 regularization coefficient 
random_strength Amount of randomness 
bagging_temperature Bayesian bootstrapping adjustment 
border_count Division number limit for numerical properties  

Table 8 
Optimum CatBoost Algorithm hyperparameters and new R-squared value.  

Hyperparameter Optimum values 

Depth 10 
learning_rate 0.1724 
iterations 1000 
l2_leaf_reg 0.8574 
random_strength 1.5011 
bagging_temperature 0.2624 
border_count 236 
New Mean R-squared value 0.9966 
Max R-squared value 0.9980  

A. Ocak et al.                                                                                                                                                                                                           



Journal of Building Engineering 97 (2024) 110737

11

experimental values for drying shrinkage and crack widths depending on the replacement rate of GBFS aggregate. The crack width- 
replacement ratio graph showed that the predicted values were closer to the experimental values than the drying shrinkage- 
replacement ratio graph. This situation was also observed in the estimated values of drying shrinkage and crack widths based on 

Fig. 4. Graph of MAE values of algorithms.  

Fig. 5. Graph of MSE values of algorithms.  
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drying time in Figs. 9 and 10. According to this, it can be said that the prediction consistency of the model created for GBFS aggregate 
may be more effective in predicting crack width compared to drying shrinkage. 

The experimental value and predicted value graphs according to 10 randomly selected different replacement ratios of the BA 
aggregate in the fold where the highest R-squared score was obtained among the 10folds are shown in, Fig. 11 for drying shrinkage and 
in Fig. 12 for crack width. Drying shrinkage and crack width graphs drawn according to drying times are shown in Figs. 13 and 14, 
respectively. 

When Figs. 11 and 12 are examined, it is seen that the values predicted by the model for BA aggregate are very close to the 
experimental values. According to the graphs, depending on the aggregate replacement rate, the model predicted the crack widths 

Fig. 6. Graph of R-Squared values of algorithms.  

Fig. 7. Model prediction value and experimental value graph for drying shrinkage of GBFS aggregate based on replacement ratio.  
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much more closely than the drying shrinkage. When the shrinkage and crack width graphs according to drying time are examined, it is 
seen that the experimental values and the predicted values progress in the same direction and the values overlap. 

Drying shrinkage and crack width prediction graphs were obtained for different replacement rates, regardless of the drying time of 
the CT aggregate in the fold with the maximum R-squared value of the optimized model. The drying shrinkage-replacement ratio 
graphs are given in Fig. 15 and the crack width-replacement ratio graphs are given in Fig. 16, which contain the experimental values 
and predicted values for the CT aggregate. The drying shrinkage-drying time graph for CT aggregate, where different aggregate 
replacement rates are taken according to the drying time, is shown in Fig. 17 and the crack width-drying time graph is shown in Fig. 18. 

When Figs. 15 and 16 are examined, it is observed that the drying shrinkage predictions for the CT aggregate tend close to the 
experimental values compared to the crack width prediction performance. This is valid for random percentages among the CT 
aggregate data within a fold selected from the maximum of all data. However, when Figs. 17 and 18 were examined, it is seen that in 
the graph where drying time is considered and there are many replacement ratios, the drying shrinkage prediction values are estimated 
almost in the same line with the experimental values, while there are small differences in the crack width prediction. Taking this into 
consideration, it can be said that the model may be more effective in predicting drying shrinkage for CT aggregate compared to crack 

Fig. 8. Model prediction value and experimental value graph for crack width of GBFS aggregate based on replacement ratio.  

Fig. 9. Model prediction value and experimental value graph for drying shrinkage of GBFS aggregate based on drying time.  
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width. 
Graphs of ten different aggregate replacement ratios randomly taken from the data of the FA aggregate in the fold with maximum R- 

squared value for the optimized model are presented below. The drying shrinkage-replacement graph of the model-predicted and 
experimental values of the FA aggregate, independent of the drying time and depending on the replacement rate, is given in Fig. 19 and 
the crack width-replacement graph is given in Fig. 20. Taking into account the drying time, the drying shrinkage and crack width 
graphs of all FA aggregate prediction values in the fold are given in Figs. 21 and 22, respectively. 

When the prediction graphs made with FA aggregate are examined, it is seen that the model is more effective in predicting drying 
shrinkage compared to the crack width prediction results. 

According to the findings, it is seen that the model is more effective in predicting the drying shrinkage for GBFS and BA aggregates 
and the crack widths for CT and FA aggregates in the graphs based on the aggregate replacement rate. These results can be considered 
as interesting outcomes. The reason is that GBFS and BA are relatively more angular-shaped aggregates compared to CT and FA. CT and 
FA shapes can be said as round or more round compared to GBFS and BA. In this manner, it is an interesting result that aggregate shape 
can affect the performance of the developed model like the one of our study that CBR and optimized CBR (NCBR) can predict the drying 

Fig. 10. Model prediction value and experimental value graph for crack width of GBFS aggregate based on drying time.  

Fig. 11. Model prediction value and experimental value graph for drying shrinkage of BA aggregate based on replacement ratio.  
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shrinkage values of relatively angular-shaped aggregates better than round ones and can predict drying shrinkage cracking better for 
more round artificial fine aggregates compared to relatively angular ones. In other words, it is well known that the properties of mortar 
or concrete components such as cement, aggregates, admixtures, or mixing water can affect the mechanical, durability, and physical 
properties of mortar or concrete like tensile and compressive strengths, unit weight, modulus of elasticity, plastic, autogenic, 
carbonation, thermal or drying shrinkages and cracking along with freezing-thawing, alkali aggregate reactions, sulfate attack, etc. 
however, considering the performances of CBR and optimized CBR(NCBR), such properties may affect the selection of machine 
learning techniques or model types to estimate or predict other properties of such mortar or concrete types. Actually, such properties of 
fine aggregates like gradation, specific surface, aggregate surface texture and shape, modulus of elasticity-rigidity, and water ab
sorption affect the properties like the ones presented in this study as inputs and outputs like tensile and compressive strengths, drying 
shrinkage, and drying shrinkage cracks experimentally at the same time. In other words, the properties of aggregates are related to 
both inputs such as tensile and compressive strengths, and outputs such as drying shrinkage unit deformations and drying shrinkage 
cracks’ width input into CBR and optimized CBR (NCBR). Furthermore, the tensile and compressive strengths also are both interact or 

Fig. 12. Model prediction value and experimental value graph for crack width of BA aggregate based on replacement ratio.  

Fig. 13. Model prediction value and experimental value graph for drying shrinkage of BA aggregate based on drying time.  
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related to both drying shrinkage values and drying shrinkage crack widths. The restraint level of drying shrinkage also affects the level 
or width values of drying shrinkage cracks. In this way, it seems that such properties of fine aggregates along with the replacement 
ratios also affect the performances of the developed models in accordance with both the natures of the actual problem and the machine 
learning algorithm. In summary, such approaches (not using only replacement ratios, using the properties of fine aggregates at the 
same time) may help to understand the experimental drying shrinkage cracking behaviors of mortars and the effects of fine aggregates 
on cracking in a different way. Graphs based on drying times tend to support this situation. The model was able to successfully predict 
both features with very high performance. It is seen that the model is successful in predicting different aggregate properties, but some 
aggregates are more prominent. In Fig. 23, comparative drying shrinkage graphs of all aggregates based on drying times are given, and 
in Fig. 24, crack width estimation graphs are given. 

When the drying shrinkage and crack width prediction graphs of the aggregates in Figs. 23 and 24 were examined according to their 

Fig. 14. Model prediction value and experimental value graph for crack width of BA aggregate based on drying time.  

Fig. 15. Model prediction value and experimental value graph for drying shrinkage of CT aggregate based on replacement ratio.  
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drying times, it was seen that the model produces prediction values that are generally compatible with the experimental values in all 
aggregates. According to the drying shrinkage graph in Fig. 23, while the performance of the model in predicting drying shrinkage 
shows a very close approach to the experimental values for BA, CT, and FA aggregate, it is seen that the predicted values for GBFS 
aggregate diverge from the experimental values by small amounts at some points. Accordingly, it can be said that the model performs 
more effectively in predicting drying shrinkage for the other 3 aggregates. According to the crack width model prediction graphs in 
Fig. 24, all aggregates generally produced predictions compatible with the experimental values. When examined on an aggregate basis, 
the model was more effective in predicting BA aggregate crack width and produced a prediction line similar to the experimental values. 
The other three aggregates gave similar results to each other. In the model, data on a certain number of aggregate types were used, but 
efficient results were obtained. Although there is no direct information on aggregate shape among the input parameters of the pre
diction model, results that cause differences in the performance evaluation of the model and indicate the effect of aggregate shape have 
been observed. The selected algorithm highlighted the features that distinguish the aggregates by categorizing the data while learning. 

Fig. 16. Model prediction value and experimental value graph for crack width of CT aggregate based on replacement ratio.  

Fig. 17. Model prediction value and experimental value graph for drying shrinkage of CT aggregate based on drying time.  
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However, this categorization may become difficult as the number of aggregates increases and contains aggregates with similar 
properties. Considering all these situations, in future studies, if the aggregate type is increased, it is recommended to try more than one 
machine learning algorithm and to use various information about aggregate properties as input to evaluate the performance of the 
model. 

6. Conclusion 

Developing technology has enabled the development of many artificial intelligence methods that save time and cost. Machine 
learning is an artificial intelligence tool that offers highly effective, economical, and fast solutions. Machine learning is frequently used 
in the field of civil engineering to ensure optimum efficiency in various experimental studies that require professional teams and 
equipment. This study aimed to predict the drying shrinkage and widths of cracks that will occur in the concrete after the use of various 

Fig. 18. Model prediction value and experimental value graph for crack width of CT aggregate based on drying time.  

Fig. 19. Model prediction value and experimental value graph for drying shrinkage of FA aggregate based on replacement ratio.  
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aggregates such as waste or sub-industrial products, with the help of machine learning. In this study, the results obtained from 60-day 
experimental measurements of concrete mortars with different aggregate substitution rates formed the data set and later a prediction 
model for estimation of drying shrinkage and widths of cracks was developed. 12 machine learning algorithms were evaluated during 
the development process. Among the algorithms tested, Decision Tree, XGBoost, Random Forest, Bagging and CatBoost algorithms 
were able to provide a prediction performance exceeding 99 %. Among them, CatBoost emerged as the best algorithm with an average 
R2 score of 99.59 %. Later the performance of the model was improved by optimizing the CatBoost algorithm’s hyperparameters. The 
CatBoost model with optimal hyperparameters was a superior predictor with a mean R2 score of 99.66 %. CatBoost(CB) is an algorithm 
developed by search engine company Yandex in 2017. CatBoost is based on decision trees and gradient boosting and grows a special 
type of trees (symmetric/oblivious trees) which allows for a simple fitting scheme and efficiency on CPUs with a tree structure itself 
working as a regularization. CatBoost provides an unusual method of dealing with categorical data, requiring not much categorical 
feature transformation [95]. Although the data used in our cases is totally numeric, the success of the CatBoost Regressor can be 
strongly related to the algorithm’s efficiency in utilizing the CPU and its flexibility which allows efficient adjustment of its hyper
parameters. CatBoost offers a natural way of regularization, but the regularization ability of CatBoost might not be positively affecting 
the success of CatBoost for this dataset, as the accuracy achieved by key regularization enablers Lasso, Ridge, and ElasticNet appeared 

Fig. 20. Model prediction value and experimental value graph for crack width of FA aggregate based on replacement ratio.  

Fig. 21. Model prediction value and experimental value graph for drying shrinkage of FA aggregate based on drying time.  
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Fig. 22. Model prediction value and experimental value graph for crack width of FA aggregate based on drying time.  

Fig. 23. Model predicted value and experimental value graphs for drying shrinkage based on the drying time of all aggregates.  
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as the lowest ones for the dataset. Another reason behind the effective success of the CatBoost algorithm in this problem may be that 
the values of the aggregates, such as tensile and compressive strength, repeat in a certain order in the data. Although the aggregates 
used in the study do not specify a category, they pointed to a certain aggregate with their unique measured compressive and tensile 
strength properties. While the machine was learning the data, it may have captured this order within itself and perceived it as nu
merical data that behaves as if it were categorical according to these features. This situation may enable the CatBoost algorithm to 
obtain better results for the numerical fields. Furthermore, even if the properties of aggregate numerically measured via experimental 
procedures (or the linguistic definitions for these aggregates have not been included in CBR or NCBR ML models), an interesting fact 
has been observed as fine aggregate physical shape (angular or round) seems to be effective on predicting drying shrinkage de
formations or crack widths. Besides, along with the replacement ratios and mixture proportions (ingredient or component contents), 
the linguistic or numerical properties of each component also may affect the prediction performances of different ML algorithm 
models. In this case, the NCBR model has been specific for the drying shrinkage properties of these fine aggregate mortars. On the other 
hand, it is possible to generalize this model for drying shrinkage and drying shrinkage cracking properties, or for other fresh and 
hardened properties of different mortar or concrete types, which incorporate different cement and aggregate types, via some additional 
experimental studies. 

The results of the research demonstrated that studies on estimating the drying shrinkage and crack width, which require long 
experimental observations, can be facilitated by machine learning models trained with data acquired from past studies and experi
ments, and shrinkage and crack width can be determined with high accuracy with machine learning models. As a result of the study, it 
is recommended to consider some characteristics of the aggregates such as chemical, physical or mechanical properties (particle size 
distribution-granulometry, chemical compositions, fineness, water absorption, surface texture and shape, maximum aggregate size, 
water absorption, permeability, porosity, density, unit weight, abrasion resistance, etc.), increase the number of types of aggregates 
included for modelling drying shrinkage and crack widhts, and re-evaluate the algorithm performances to be used in the development 
of the prediction model. The results contain clues that the physical properties of the aggregates used in the model are effective in the 

Fig. 24. Model predicted value and experimental value graphs for crack width based on the drying time of all aggregates.  
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prediction performance. In the current study, a prediction model was developed with a limited number of aggregate types, without 
including aggregate physical properties. For a more general model, the importance of including physical properties such as aggregate 
shape is understood. The CatBoost algorithm managed to successfully categorize the aggregates used in the study. However, the in
crease in aggregate types and properties may make this categorization difficult and may be insufficient, especially in estimating ag
gregates with similar properties. Considering this situation, it is anticipated that the most effective algorithm should be re-examined 
after more parameters are included in the model. 
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[25] İ.B. Topçu, T. Bilir, Experimental investigation of drying shrinkage cracking of composite mortars incorporating crushed tile fine aggregate, Mater. Des. 31 (9) 

(2010) 4088–4097. 
[26] T. Bilir, O. Gencel, I.B. Topcu, Properties of mortars with fly ash as fine aggregate, Construct. Build. Mater. 93 (2015) 782–789. 
[27] T. Bilir, O. Gencel, I.B. Topcu, Prediction of restrained shrinkage crack widths of slag mortar composites by Takagi and Sugeno ANFIS models, Neural Comput. 

Appl. 27 (2016) 2523–2536. 
[28] W.J. Weiss, S.P. Shah, Recent trends to reduce shrinkage cracking in concrete pavements, in: Proceedings of the 1997 Airfield Pavement Conference, 1997, 

December. 
[29] K. Raoufi, J. Weiss, The role of fiber reinforcement in mitigating shrinkage cracks in concrete, in: Fibrous and Composite Materials for Civil Engineering 

Applications, Woodhead Publishing, 2011, pp. 168–188. 
[30] K.J. Folliard, N.S. Berke, Properties of high-performance concrete containing shrinkage-reducing admixture, Cement Concr. Res. 27 (9) (1997) 1357–1364. 
[31] S. Nagataki, H. Gomi, Expansive admixtures (mainly ettringite), Cement Concr. Compos. 20 (2–3) (1998) 163–170. 
[32] M. Cyr, C. Ouyang, S.P. Shah, Design of hybrid-fiber reinforcement for shrinkage cracking by crack width predictions, Brittle Matrix Compos 7 (2003) 243–252. 

A. Ocak et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S2352-7102(24)02305-2/sref1
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref1
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref2
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref3
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref4
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref5
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref5
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref6
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref6
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref7
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref8
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref8
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref9
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref10
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref11
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref12
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref12
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref13
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref14
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref14
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref15
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref15
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref16
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref16
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref17
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref17
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref18
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref19
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref20
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref20
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref21
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref21
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref22
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref22
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref23
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref24
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref25
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref25
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref26
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref27
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref27
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref28
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref28
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref29
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref29
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref30
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref31
http://refhub.elsevier.com/S2352-7102(24)02305-2/sref32


Journal of Building Engineering 97 (2024) 110737

23

[33] M. Collepardi, A. Borsoi, S. Collepardi, J.J.O. Olagot, R. Troli, Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet 
curing conditions, Cement Concr. Compos. 27 (6) (2005) 704–708. 

[34] H.R. Shah, J. Weiss, Quantifying shrinkage cracking in fiber-reinforced concrete using the ring test, Mater. Struct. 39 (2006) 887–899. 
[35] Z. Konik, J. Małolepszy, W. Roszczynialski, A. Stok, Production of expansive additive to Portland cement, J. Eur. Ceram. Soc. 27 (2–3) (2007) 605–609. 
[36] G. Barluenga, F. Hernández-Olivares, Cracking control of concretes modified with short AR-glass fibers at an early age. Experimental results on standard 

concrete and SCC, Cement Concr. Res. 37 (12) (2007) 1624–1638. 
[37] L. Mo, M. Deng, M. Tang, A. Al-Tabbaa, MgO expansive cement and concrete in China: past, present and future, Cement Concr. Res. 57 (2014) 1–12. 
[38] D. Shen, C. Wen, J. Kang, H. Shi, Z. Xu, Early-age stress relaxation and cracking potential of High-strength concrete reinforced with Barchip fiber, Construct. 

Build. Mater. 258 (2020) 119538. 
[39] M. Gholami, F. Moghadas Nejad, A.M. Ramezanianpour, Increasing the length of concrete pavement slabs using shrinkage-reducing reducing admixture and 

polypropylene fiber, International Journal of Concrete Structures and Materials 18 (1) (2024) 9. 
[40] A. Zielinski, M. Kaszynska, Assessment of cracking potential of normal - and lightweight self-consolidating concrete, in: In Proceedings of the 10th Fib 

International PhD Symposium in Civil Engineering, 2014, pp. 103–108. 
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