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Introduction

Thyroid	 nodules	 are	 common	 clinical	 findings,	 af-
fecting up to 50% of the general population. Women 
and	the	elderly	exhibit	a	higher	prevalence.	While	most	
of these nodules are benign, a small percentage can be 
malignant	 [1].	Ultrasound	(US)	 imaging	 	 is	a	vital	 tool	

for	 thyroid	 nodule	 assessment.	 It	 offers	 a	 noninvasive,	
cost-effective,	and	widely	accessible	means	to	determine	
nodule size, shape, echogenicity, and other features piv-
otal	 for	malignancy	 risk	 stratification	 [2].	The	Thyroid	
Imaging	Reporting	and	Data	System	(TIRADS)	provides	
a	 standardized	 classification	 for	 thyroid	 nodules	 based	
on US characteristics. This aids in predicting the risk of 
malignancy and guiding subsequent interventions [3]. 
Low-risk	thyroid	nodules,	such	as	those	that	are	benign,	
asymptomatic, or small, are generally managed through 
monitoring. This approach often includes regular check-
ups	 that	 encompass	 clinical	 and	US	 examinations,	 and	
thyroid	function	tests	[4,5].	However,	nodules	that	display	
uncertain	results,	exhibit	growth,	or	have	suspicious	fea-
tures might require a more invasive diagnostic procedure 
like	fine-needle	aspiration	biopsy	(FNAB)	[6].	US	guid-
ance	also	ensures	the	accuracy	of	FNAB	by	confirming	
that the tissue sampled genuinely represents the nodule  
in question [2,6].
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The	 interpretation	 and	 communication	 of	 find-
ings	from	FNAB	of	thyroid	nodules	are	facilitated	by	a	
standardized	system	known	as	The	Bethesda	System	for	
Reporting Thyroid Cytopathology [7]. The system com-
prises	 six	 categories,	 ranging	 from	 ‘Non-diagnostic	 or	
Unsatisfactory’	to	‘Malignant.’	Each	category	correlates	
with	a	specific	risk	of	malignancy	and	suggests	a	particu-
lar management approach [2]. 

Recently, deep learning techniques have revolution-
ized medical imaging analysis. These techniques utilize 
convolutional	 neural	 networks	 (CNN)	 or	 other	 neural	
networks	 to	 learn	 complex	 patterns	 and	 extract	 valu-
able	 information	 from	 large	 datasets	 [8].	By	 analyzing	
these	datasets	and	discerning	intricate	patterns,	artifical	
intelligence	(AI)	algorithms	can	assist	 in	differentiating	
benign and malignant nodules, thereby improving clin-
ical decision-making and potentially reducing the need 
for invasive procedures such as surgery [9]. Moreover, 
deep learning models have demonstrated remarkable re-
sults in diverse medical imaging applications, including 
tumor	classification,	anatomical	structure	segmentation,	
and abnormality detection [10]. 

The practical application of these advanced algo-
rithms and models requires not only an intricate under-
standing of the underlying theory but also the ability to 
write	 an	 effective	 code	 [11,12].	 Researchers	 lacking	 a	
multidisciplinary team face a challenge in developing a 
deep learning model using medical data, as it necessi-
tates	 a	 blend	of	medical	 and	programming	proficiency.	
Python,	a	widely	used	programming	language	for	AI	and	
machine	learning,	can	be	difficult	for	individuals	lacking	
extensive	 programming	 experience	 or	 expertise	 in	 the	
field	[11-13].	Such	obstacles	can	hinder	the	adoption	and	
implementation	of	AI	 solutions,	 as	well	 as	 the	 training	
and education of professionals interested in these ad-
vanced	technologies	[11,12].	ChatGPT,	a	large	language	
model developed by OpenAI, has capabilities in pro-
gramming and coding that have been highlighted [14,15]. 
Currently,	 there	 are	 no	 studies	 that	 explore	 the	 utiliza-
tion	of	ChatGPT	 for	 the	development	of	 deep	 learning	 
models. 

The current study seeks to address AI adoption-imple-
mentation	challenges	by	exploring	the	use	of	ChatGPT,	
as a tool to facilitate the coding process and enhance 
learning	for	individuals	working	with	Python.	This	study	
primarily	 aims	 to	 develop	 a	 deep	 learning	model	with	
the	assistance	of	ChatGPT	for	thyroid	nodules,	using	US	
images,	with	 cytopathology	 of	 the	 FNAB	 serving	 as	 a	
reference.	The	hope	is	that	this	approach	will	streamline	
the development process and enable researchers and pro-
fessionals to leverage the capabilities of deep learning 
and AI technologies. 

Material and methods

Data collection
In	this	retrospective	study,	we	included	patients	over	

18	years	old	who	underwent	thyroid	US	and	subsequent	
FNAB	 for	 suspicious	 nodules	 between	 January	 2017	
and	January	2022.	The	inclusion	criteria	consisted	of	the	
availability of high-quality US images in the PACS sys-
tem,	a	corresponding	FNAB	diagnosis	in	the	pathology	
database, and no history of previous thyroid surgery or 
ongoing	thyroid-related	treatments.	The	exclusion	crite-
ria	encompassed	patients	with	inadequate	image	quality,	
and	instances	with	missing	or	incomplete	clinical	data.

We gathered thyroid US images of the chosen pa-
tients	from	the	PACS	system,	which	contained	informa-
tion on nodule size, shape, echogenicity, and other rel-
evant features critical for deep learning model training 
and	analysis.	The	images	were	saved	in	a	suitable	format	
to	ensure	compliance	with	CNN	requirements	for	image	
processing and analysis. 

In	our	analysis,	we	examined	 the	demographic	pro-
files,	 imaging	 characteristics,	 and	 cytological	 features	
of	 1079	patients,	 each	presenting	with	 a	 single	 thyroid	
nodule.	However,	due	 to	 incomplete	clinical,	patholog-
ical,	or	radiological	data,	we	excluded	18	patients	from	
the	study,	resulting	in	a	final	count	of	1061	patients	for	
analysis.

Firstly,	 based	 on	 the	 FNAB	 cytology	 findings,	 we	
removed any samples that fell under the non-diagnostic 
category	of	the	Bethesda	classification	from	our	dataset	
(n=180).	 For	 clarity	 and	 to	 remain	 consistent	 with	 the	
original	Bethesda	classification,	we	then	divided	the	pa-
tients	 into	five	categories:	benign,	atypia	of	undetermi-
ned	significance	(AUS)	follicular	lesion	of	undetermined	
significance	(FLUS),	follicular	neoplasm,	and	malignant.		

The enrolled patients had an average age of 41.61 
years, ranging from 18 to 82 years. Regarding gender 
distribution,	190	nodules	were	associated	with	male	pa-
tients	(21.6%),	and	691	nodules	were	associated	with	fe-
male	patients	(78.4%).

As for the distribution of thyroid pathologies in the 
dataset,	 there	were	428	 images	of	benign	(48.6%),	125	
images	of	AUS	(14.2%),	79	images	of	FLUS	(9.0%),	63	
images	of	follicular	neoplasm	(7.2%),	and	186	images	of	
malignant	(21.1%)	pathologies.

Due to the retrospective nature of the study the re-
quirement	 for	 patient	 consent	 was	 waived.	 The	 local	
ethics	committee	and	IRB	approval	 for	 this	study	were	
obtained.

ChatGPT assistance
We	 proceeded	 with	 the	 development	 of	 the	 deep	

learning	model,	employing	ChatGPT	to	aid	in	code	writ-
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ing.	ChatGPT	provided	guidance	on	preprocessing	steps,	
such	as	resizing,	normalizing	pixel	values,	and	applying	
data augmentation techniques. It also assisted in choos-
ing	the	optimal	network	architecture,	algorithm	selection,	
model optimization, suggesting suitable hyperparame-
ters, and helped troubleshoot code-related issues, thereby 
ensuring	an	efficient	and	effective	development	process.

Data organization, software installation, and 
Python library setup
For implementing deep learning applications, our 

research utilized Python [13]. We used PyCharm, a free 
and open-source integrated development environment 
(IDE)	with	features	such	as	code	completion,	debugging,	
and version control integration [16]. We used an NVIDIA 
GeForce	GTX	1630	Ti	laptop	GPU	(VRAM:	8	GB)	for	
the	execution.

The successful implementation of a deep learning al-
gorithm	necessitates	the	installation	and	configuration	of	
various	Python	libraries	and	packages	[17].	We	followed	
ChatGPT’s	 recommendations	 for	 a	 model	 creation	 re-
garding the necessary libraries and packages for our deep 
learning model.

ChatGPT assisted-deep learning model 
development and implementation
With	 the	 assistance	 of	 ChatGPT,	 we	 chose	 a	 CNN	

as the deep learning architecture for our study, given its 
proven	effectiveness	 in	medical	 image	analysis	 [9].	We	
employed a step-by-step approach, using various Python 
libraries	and	choosing	specific	parameters	based	on	our	
study’s	requirements	with	ChatGPT’s	help	(supplemen-
tary	file,	fig	1).	

We imported the collected data into our Python envi-
ronment using the pandas library. The images and labels 
were	loaded	from	subfolders.	Next,	we	preprocessed	the	
images using the OpenCV library by resizing them to a 
uniform	size.	Images	with	dimensions	of	440x440	were	
resized	to	128x128	using	the	bilinear	interpolation	meth-
od.	We	also	normalized	 their	 pixel	 values,	 and	 applied	
data augmentation techniques to enhance the dataset’s 
size and improve the model’s generalization capabili-
ties.	For	 the	train-test	split,	we	used	the	train_test_split	
function of the scikit-learn library, allocating 70% of the 
data for training, 15% for validation, and 15% for testing 
(supplementary	file,	fig	2).	All	test	sets	were	independent	
of the training sets. This allocation is common practice 
in	machine	 learning	 to	ensure	sufficient	data	 for	model	
evaluation	and	prevent	overfitting	[18].

In	the	model	creation	stage,	we	used	TensorFlow	and	
Keras libraries to build a CNN architecture. The model 
architecture	consisted	of	two	convolutional	layers	(each	
followed	by	a	max	pooling	layer)	and	two	fully	connected	
layers.	The	output	layer	had	five	neurons,	corresponding	

to	the	five	classes	of	thyroid	nodules,	with	a	softmax	acti-
vation function for outputting class probabilities. To pre-
vent	overfitting,	dropout	layers	were	added	with	a	rate	of	
0.5.	The	input	shape	for	the	first	convolutional	layer	was	
set	to	(128,	128,	3)	to	accommodate	the	resized	and	pre-
processed	images.	During	the	training	process,	we	used	
the	Adam	 optimizer,	 a	 popular	 and	 effective	 algorithm	
for	deep	learning	tasks.	We	compiled	the	model	with	the	
Adam optimizer, sparse categorical cross-entropy loss, 
and accuracy as the performance metric [19]. We imple-
mented early stopping to monitor the validation loss and 
halt	training	if	it	did		not	improve	after	a	specified	number	
of	epochs,	also	restoring	the	best	weights	obtained	during	
training. We then trained the model for 100 epochs, us-
ing the training and validation data, and applied the early 
stopping	callback	(supplementary	file,	fig	3).	The	train-
ing process stopped at the 29th epoch, utilizing the early 
stopping	mechanism	to	prevent	overfitting	and	optimize	
model	performance.	This	setup	ensured	effective	 learn-
ing	while	avoiding	overfitting	of	the	training	data.

After	 training	 the	 model,	 we	 evaluated	 its	 perfor-
mance using various metrics, including accuracy, preci-
sion, recall, and F1-score. We also calculated the 95% 
confidence	 intervals	 for	 each	 metric	 to	 determine	 the	
range	 of	 possible	 values.	 In	 addition,	 we	 used	 scikit-
learn’s roc_curve and auc functions to generate ROC 
curves and AUC values for each thyroid pathology. We 
plotted loss and accuracy curves to visualize the training 
process	and	identify	any	signs	of	overfitting	or	underfit-
ting.

Finally,	we	utilized	the	Gradient	Weighted	Class	Ac-
tivation	Mapping	 (Grad-CAM)	 visualization	 technique	
to discern the areas of the image that the model deemed 
significant	 for	 making	 its	 predictions	 (Supplementary	
file,	fig	4).	

Statistical Analysis
We conducted descriptive statistics to summarize and 

describe the key characteristics of our dataset, including 
demographic data and thyroid pathology distribution. 
We assessed our deep learning model’s performance us-
ing metrics such as accuracy, precision, recall, F1-score, 
and	the	area	under	the	ROC	curve	(AUC).	In	our	study,	
we	calculated	95%	confidence	intervals	for	each	perfor-
mance	metric	(accuracy,	precision,	recall,	F1-score,	and	
AUC)	 to	 quantify	 the	 uncertainty	 around	 our	 model’s	
performance. 

Results

Model performance-training and validation set 
During the training process, the model demonstrated 

a consistent decrease in loss and a steady increase in ac-



378 Ismail Mese et al ChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artificial intelligence

curacy	(fig	1).	The	exact	values	for	loss	and	accuracy	at	
the	end	of	training	were	0.42	and	0.84,	respectively,	for	
the training set, and 0.82 and 0.82 for the validation set. 
We	observed	potential	overfitting,	evidenced	by	the	con-
tinuous	 decrease	 in	 training	 loss,	 while	 validation	 loss	
stagnated. We addressed this through the implementation 
of	regularization	techniques	such	as	dropout	and	weight	
decay,	which	improved	the	model’s	generalizability.

Model performance-testing set 
The	model’s	 performance	 showcases	 significant	 re-

sults across various metrics. The accuracy, a fundamental 
measure of the model’s overall correctness, is recorded 
at 0.81. This indicates that our model correctly predicted 
81% of the test data instances, making it considerably 
reliable.	This	high	level	of	accuracy	falls	within	a	95%	
confidence	 interval	of	0.76	 to	0.87,	offering	 further	as-
surance of the model’s performance. Table I provides a 
comprehensive	view	of	 the	performance	metrics	on	the	
testing set.

In terms of the deep learning model’s performance 
metrics on thyroid subgroups, the benign category is par-
ticularly	noteworthy.	This	category	exhibits	high	preci-
sion	(0.78)	and	an	exceptional	recall	(0.96),	 illustrating	
the model’s robust ability to accurately identify this cat-
egory	while	effectively	minimizing	false	positives.	This	
balance	between	precision	and	recall	 is	mirrored	 in	 the	
F1-score	of	0.86.	Additionally,	it’s	worth	noting	that	this	
category	had	the	highest	number	of	instances,	with	a	total	
of 94. 

The follicular neoplasm category also presents sig-
nificant	 performance,	with	 a	 perfect	 precision	 score	 of	
1.00. This indicates that every prediction made by the 
model	for	this	category	was	accurate.	However,	the	recall	
for	this	category	was	lower	at	0.71,	suggesting	the	model	
may not have detected all true positives. This balance is 
reflected	in	the	F1-score	of	0.83.

Similarly, the malignant category demonstrated strong 
results,	with	high	precision	(0.82)	and	recall	(0.92).	The	
F1-score for this category is 0.87, indicating a balanced 
performance	between	precision	and	recall.	Overall,	these	
results	illustrate	the	deep	learning	model’s	effective	per-

formance	across	the	different	thyroid	subgroups.	Table	III	
provides	a	comprehensive	classification	report,	breaking	
down	 the	performance	metrics	 for	each	category	under	
study. Figure 2 visually represents the ROC curves for 
each	subgroup,	along	with	their	respective	AUC	values,	
further detailing the model’s performance on subgroup 
classification.

Fig 2. Subgroup categorization evaluation through ROC Curve 
and AUC values

Fig 1. Loss and accuracy curves for training and validation sets

Table I. Performance metrics on the testing set

Metric Performance 95% Confidence 
Interval

Accuracy 0.81 0.76 - 0.87
Precision 0.83 0.73 - 0.86
Recall 0.81 0.78 - 0.88
F1-score 0.80 0.75 - 0.86
AUC 0.89

AUC: The Area Under the Curve
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Grad-CAM	heatmaps	were	 utilized	 to	 visualize	 the	
features and patterns learnt  by the CNN. These heatmaps 
serve as validation, demonstrating that the algorithm 
correctly	 identified	nodules,	particularly	 the	 solid	areas	
within	these	nodules,	for	feature	extraction,	classification	
and	subsequent	decision-making	(fig	3).

The	classification	report	in	Table	II	presents	the	per-
formance metrics for each subcategory. 

Discussion

Our study aimed to develop a robust, accurate deep 
learning	model	with	the	assistance	of		ChatGPT	for	the	
assessment of thyroid nodules using ultrasound images. 
The application of AI in thyroid nodule evaluation could 
potentially improve diagnostic accuracy, aid in decision-
making, reduce unnecessary invasive procedures, and 
contribute to personalized therapeutic strategies. 

This	 study’s	unique	proposition	was	 the	application	
of	the	ChatGPT	language	model	to	assist	in	the	develop-
ment	 of	 the	 deep	 learning	model.	By	 leveraging	Chat-
GPT’s	capabilities,	we	streamlined	the	process	of	model	
development. The high accuracy achieved by our model, 
81%,	 suggests	 that	 the	 ChatGPT-assisted	 development	
process	 was	 effective.	 The	model	 demonstrated	 strong	
performance across various thyroid pathology sub-
groups, particularly benign category, follicular neoplasm 
category, and malignant category. These results under-
line	 the	model’s	 ability	 to	 distinguish	 different	 thyroid	
pathologies, highlighting its potential usefulness in clini-
cal	 decision-making.	 By	 offering	 a	 non-invasive	 tech-
nique	for	thyroid	pathology	classification	via	ultrasound,	
it presents a patient-centric alternative to more invasive 
diagnostics such as biopsies. Furthermore, integrating 
ChatGPT	into	the	developmental	phase	fosters	transpar-
ency and replicability, possibly mitigating radiologists’ 
workload	and	amplifying	diagnostic	precision.	

The	accuracy	of	our	model	 (81%)	 is	comparable	 to	
other studies that have employed deep learning tech-
niques	for	thyroid	nodule	classification.	For	instance,	Ma	
et	al	[20]	reported	an	accuracy	of	83.7%,	while	Song	et	
al	[21]	achieved	an	accuracy	of	85.6%.	The	slight	differ-
ences in performance could be attributed to variations in 
dataset size, data quality, model architecture, and training 
parameters. 

The demographic characteristics of the patient sample 
in our study provide crucial insights into the prevalence 
and distribution of thyroid nodules. The gender distribu-
tion	in	our	sample,	with	21.6%	male	and	78.4%	female	
patients,	aligns	with	the	broader	literature,	reflecting	the	
known	predilection	of	 thyroid	diseases	for	women	[20-
24]. 

The originality and strength of this study lie in its in-
novative approach to merging traditional medical imag-
ing	 techniques	 with	 cutting-edge	 artificial	 intelligence.	
With	this	methodology	used	for	the	first	time	in	the	litera-
ture	for	thyroid	nodules,	the	integration	of	ChatGPT	into	
our deep learning model development brought about pro-
found	enhancements.	ChatGPT	facilitated	our	decision-
making,	 especially	when	 it	 came	 to	 the	pivotal	 step	of	
algorithm selection [25]. It not only shed light on the best 
network	architecture	for	our	study	but	also	elaborated	on	
various	 options	 with	 comprehensive	 explanations.	 The	
study’s meticulous data selection, involving comprehen-
sive	inclusion	and	exclusion	criteria,	combined	with	the	
detailed	 preprocessing	 of	 images	with	 ChatGPT,	 high-
lights its methodological rigor. The utilization of various 
evaluation metrics, such as accuracy, precision, recall, 
F1-score, and ROC curves, provides a holistic assessment 
of the model’s performance. Additionally, the adoption of 
Grad-CAM	heatmaps	to	elucidate	the	model’s	decision-
making process embodies a commitment to transparency 
and interpretability, critical in fostering trust among cli-
nicians	and	patients.	The	integration	not	only	simplified	
the	model	creation	process	but	also	enhanced	efficiency.	

We incorporated a CNN as the deep learning architec-
ture	for	our	study,	following	ChatGPT’s	advices.	Com-
pared	to	other	classification	algorithms,	a	CNN	requires	
significantly	 less	pre-processing	[26].	Whereas	conven-
tional	methods	require	manually	engineered	filters,	with	

Fig 3. Thyroid	 nodule	 ımages	 and	 corresponding	Grad-CAM	
heatmaps

Table II. A	classification	report	for	the	different	categories	un-
der	examination	

Category Precision Recall F1-score Support
AUS 0.82 0.48 0.61 29
Benign	 0.78 0.96 0.86 94
FLUS 0.92 0.55 0.69 20
Follicular  
Neoplasm

1.00 0.71 0.83 17

Malignant 0.82 0.92 0.87 25
AUS:	 Atypia	 of	 Undetermined	 Significance,	 FLUS:	 Follicular	 
Lesion	of	Undetermined	Significance	
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sufficient	 training,	CNNs	 can	 learn	 these	filters	 or	 fea-
tures	 autonomously	 [26,27].	 To	 address	 the	 overfitting	
problem,	we	employed	regularization	techniques	such	as	
dropout	and	weight	decay	and	implemented	early	stop-
ping callback [28]. Early Stopping is a regularization 
technique	 for	 deep	 neural	 networks	 that	 stops	 training	
when	 parameter	 updates	 no	 longer	 begin	 to	 yield	 im-
prove on a validation set. In essence, technique stores 
and updates the current best parameters during training, 
and	when	parameter	updates	no	longer	yield	an	improve-
ment	 (after	 a	 set	number	of	 iterations)	 it	 stops	 training	
and	use	 the	 last	best	parameters.	 It	works	as	a	 regular-
izer by restricting the optimization procedure to a smaller 
volume	of	parameter	space	[28].	ChatGPT	offered	valu-
able assistance by providing suggestions in this manner. 
With	 optimization	 of	 functions	 dropout,	 weight	 decay,	
L2	regularization,	it	has		significantly	improved	the	gen-
eralization capability of our model [29,30]. 

We employed a suite of evaluation metrics to thor-
oughly assess the performance of our deep learning mod-
el, namely accuracy, precision, recall, and the F1 score. 
The	95%	confidence	intervals	provided	for	each	metric	
reinforced the model’s reliability and its readiness for 
deployment	in	real-world	scenarios	[31,32].		AUS	dem-
onstrates	high	precision	but	low	recall,	leading	to	a	low	
F1	score.	This	indicates	that	while	the	model	is	precise	in	
identifying	AUS	cases,	it	tends	to	miss	a	significant	num-
ber of true positive cases. In contrast, benign category 
shows	 average	precision	 and	high	 recall,	 resulting	 in	 a	
high F1 score. This suggests that the model accurately 
identifies	the	majority	of	true	positive	cases	in	this	cat-
egory,	with	a	slight	trade-off	in	precision.	FLUS	has	high	
precision	but	 low	 recall,	yielding	a	moderate	F1	 score,	
implying	 that	while	 the	model	 is	 precise	 in	 classifying	
FLUS cases, it misses several true positive cases. Fol-
licular	neoplasm	exhibits	perfect	precision	and	average	
recall, leading to a high F1 score, signifying that the 
model	correctly	identifies	all	true	positive	cases,	but	its	
recall	suggests	that	some	cases	are	misclassified.	Finally,	
the malignant category demonstrates high precision and 
recall, resulting in a high F1 score, indicating that the 
model	performs	well	in	this	category,	accurately	identi-
fying	most	true	positive	cases	while	maintaining	a	good	
balance	between	precision	and	recall.

Understanding the decision-making process of deep 
learning models is crucial in clinical applications to build 
trust and facilitate the adoption of AI-assisted models. 
Methods	 such	 as	 Grad-CAM,	 LIME,	 or	 SHAP	 can	 be	
employed	to	enhance	model	interpretability	and	explain-
ability,	ensuring	that	 the	model’s	predictions	align	with	
human	 expert	 knowledge	 [33].	As	 suggested	 by	 Chat-
GPT,	we	used	Grad-CAM	heatmaps,	which	provided	val-

uable insights into our model’s decision-making process. 
Selvaraju	et	al	introduced	Grad-CAM	technique,	which	
offers	a	visual	explanation	of	deep	learning	models	[34].	
This	method	allows	for	enhanced	understanding	of	mod-
els during detection or prediction tasks. In its operation, 
Grad-CAM	takes	an	 image,	processes	 it	 using	 the	des-
ignated model, and after predicting a label, applies the 
Grad-CAM	technique	to	one	of	the	Convolutional	layers,	
typically the last one. Radiologists can then use a color 
visualization	 feature	of	Grad-CAM	to	view	clearer	 im-
ages,	facilitating	more	informed	and	confident	decisions	
[35].	By	 visualizing	 the	 regions	 of	 the	 images	 that	 the	
model	found	most	informative,	we	could	verify	that	the	
model	was	focusing	on	relevant	features.	This	technique	
assists in making deep learning models more interpret-
able	and	explainable	[35].

While	 ChatGPT’s	 capabilities	 in	 programming	 and	
coding	have	been	highlighted,	a	noticeable	gap	exists	in	
the	literature	[14,15].	Specifically,	no	studies	focus	on	us-
ing	ChatGPT’s	coding	potential	 to	create	deep	learning	
models. Our research successfully addressed this void. 
For	 coding	 context,	 in	 a	 study	with	undergraduate	 stu-
dents,	ChatGPT	proved	instrumental	in	providing	quick	
solutions, enhancing thinking abilities, simplifying de-
bugging, and boosting self-assurance during program-
ming	tasks	[14].	However,	it	was		 	not	without		raising	
some	concerns:	there	were	instances	of	promoting	lazi-
ness	 and	 occasional	 inaccurate	 responses.	 In	 software	
bug	 resolution,	 ChatGPT’s	 performance	 stood	 on	 par	
with	 other	 deep	 learning	 methods.	 Its	 unique	 strength	
lies in integrating additional information, such as an-
ticipated outputs or error signals [14]. This underscores 
ChatGPT’s	potential	in	programming,	but	it	is	essential	
to	approach	its	use	with	an	awareness	of	its	limitations.

In	addition	to	assisting	with	the	technical	aspects	of	
deep	learning	model	development,	ChatGPT	also	played	
a	significant	 role	 in	 troubleshooting	code-related	 issues	
throughout our study. These issues ranged from debug-
ging	syntax	errors	to	addressing	problems	related	to	data	
processing, data formatting, and the implementation of 
various	deep	learning	libraries	and	frameworks.	For	in-
stance,	ChatGPT	was	instrumental	in	resolving	problems	
associated	with	the	integration	of	TensorFlow	and	Keras	
into our deep learning model. It helped us identify and 
correct errors in our model’s architecture, the imple-
mentation of optimization algorithms, and the setting of 
hyperparameters.	ChatGPT	also	guided	us	in	the	identi-
fication		of	the	most	effective	methods	for	data	augmenta-
tion, normalization, and encoding. 

AUS/FLUS	remain	a	challenge,	at	both	the	diagnostic	
and therapeutic level [36]. In this category, the risk of 
malignancy	varies	between	18%	and	81%	[37].	Within	
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this group, discerning malign samples from benign ones 
with	the	human	eye	can	be	challenging.	In	this	context,	
we	 believe	 that	 artificial	 intelligence,	 especially	 with	
ChatGPT’s	guidance,	can	be	of	assistance	in	differentiat-
ing	between	malign	and	benign	cases	within	 those	cat-
egories. 

In	our	study	which	focused	on	the	development	of	a	
deep learning model for the assessment of thyroid nod-
ules using US images, several limitations and potential 
areas	 for	 improvement	were	noted.	Starting	with	Chat-
GPT’s	 limitations:	firstly,	 our	 reliance	on	ChatGPT	 for	
guidance	 in	 algorithm	development	 is	worth	 highlight-
ing.	While	 ChatGPT	 proved	 instrumental,	 offering	 in-
sights	 into	 the	 knowledge	 available	 at	 its	 last	 update,	
the	 rapidly	 evolving	field	 of	AI	 could	 introduce	 newer	
methodologies	 or	 paradigms	 postdating	 this	 knowl-
edge. If there have been groundbreaking advancements 
in CNN architectures or optimization techniques after 
the	 last	update,	ChatGPT	would	not	be	aware	of	 them.	
Secondly,  it is crucial to understand the potential bias-
es	 embedded	 in	ChatGPT’s	 recommendations.	Derived	
from its training data, these biases, if unaddressed, can 
permeate	 its	 suggestions	 [38,39].	 For	 instance,	 while	
CNN	is	well-known,	there	might	be	niche	architectures	
specifically	 designed	 for	 certain	 types	 of	 medical	 im-
ages that the model does  not emphasize. The simplic-
ity	of	 the	CNN	architecture	chosen	by	ChatGPT	might	
not recognize certain intricate features in ultrasound im-
ages,	which	 could	 potentially	 undermine	 its	 diagnostic	
proficiency	 for	 specific	 pathologies	 [40,41].	 Investigat-
ing more sophisticated architectures, such as DenseNets, 
ResNets,	 or	 Inception	 networks,	 might	 bolster	 perfor-
mance. These have demonstrated heightened aptitude for 
discerning	complex	image	features,	subsequently	elevat-
ing	 classification	 accuracy	 [42,43].	Leveraging	 transfer	
learning techniques could enhance the model’s adaptive 
prowess	 [44].	 Furthermore,	 a	 fundamental	 issue	 is	 the	
limited	transparency	into	ChatGPT’s	training	data	[38].	
This	training	enables	ChatGPT	to	generate	code	snippets	
that	may	seem	innovative	and	useful	at	first	glance,	but	
it	 also	 raises	 critical	 concerns.	 Specifically,	 there	 is	 no	
way	to	ascertain	whether	the	code	it	generates	is	an	ex-
act	or	approximate	replica	of	a	code	previously	written	
by someone else. Utilizing such code in a commercial 
product or service could lead to complicated copyright 
disputes or even legal actions [38]. The ethical implica-
tions	are	equally	significant.	Therefore,	while	ChatGPT	
offers	exciting	possibilities,	 it	 is	crucial	 to	approach	 its	
output	with	caution	and	due	diligence.	It	is	imperative	to	
scrutinize	ChatGPT’s	advice	against	expert	opinion	and	
industry	 knowledge	 [38].	Adopting	 a	 multidisciplinary	
approach,	 including	 both	 domain	 experts	 and	machine	

learning specialists, can ensure the development process 
remains comprehensive and devoid of undue biases [39].

Regarding	human	experts	or	data	limitations:	the	pri-
mary constraint is the quality and volume of our training 
dataset. If inadequate, this could compromise the model’s 
accuracy	and	generalizability	[45].	If	the	dataset	was	col-
lected from a single institution or geographic location 
such	 as	 ours,	 the	findings	might	 not	 generalize	well	 to	
other settings or populations. Certain demographic or 
clinical subgroups might be underrepresented in the 
study,	making	the	model	less	effective	for	those	popula-
tions.	Additionally,	in	our	retrospective	study,	we	utilized	
the	Bethesda	2017	criteria	because	our	database	includes	
patients	from	January	2017	to	January	2022;	however,	it	
is  important to note that this may limit the generalizabil-
ity	of	our	findings,	as	the	updated	Bethesda	2023	criteria	
are	now	available.

Future perspectives
With	the	rapid	advancements	in	the	field	of	artificial	

intelligence and deep learning, the future holds promis-
ing opportunities to enhance our current methodologies 
and	 models	 for	 diagnosing	 thyroid	 nodules.	 Building	
upon	our	ChatGPT-assisted	deep	learning	model,	several	
modifications	 can	 be	 considered	 for	 future	 implemen-
tations. First, incorporating a broader spectrum of data 
from diverse sources and demographics can bolster the 
model’s robustness and generalizability. Second, the im-
plementation of transfer learning using state-of-the-art 
architectures	such	as	ResNet,	Inception,	or	VGG	can	po-
tentially improve accuracy and reduce training time [44]. 
Furthermore, as ultrasound images can sometimes have 
inherent noise, incorporating advanced image processing 
and enhancement techniques before training can ensure 
cleaner	 and	more	 focused	data	 input.	This	will	 help	 in	
the	extraction	of	more	relevant	features,	thus	improving	
diagnosis accuracy [46]. To reduce errors, future imple-
mentations	 can	 consider	 ensemble	 techniques,	 where	
multiple models’ predictions are combined to arrive at 
a	final	decision	[47].	Lastly,	continuous	feedback	loops	
can	be	established	where	expert	radiologists	review	and	
correct the model’s predictions, creating an ever-evolv-
ing	 system	 that	 learns	 from	 its	 mistakes	 [48].	 As	 we	
move	forward,	a	synergy	between	human	expertise	and	
artificial	 intelligence,	 like	 the	 one	 we	 established	with	
ChatGPT,	will	 be	 pivotal	 in	 pushing	 the	 boundaries	 of	
medical diagnostics and patient care. To truly gauge the 
model’s	viability	in	practical	scenarios,	external	valida-
tions	using	distinct	datasets	and	forward-looking	clinical	
trials are essential. These investigations can validate the 
model’s versatility across varied populations, measure its 
influence	on	clinical	choices,	and	spotlight	potential	en-
hancement areas [49].
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Conclusion

Our study highlights the potential of AI-assisted deep 
learning	models,	such	as	those	developed	with	ChatGPT,	
in	medical	image	analysis.	As	an	initial	study,	we	were	
able to achieve accuracy close to the success of more ad-
vanced	neural	networks	in	the	literature.	

Conflict of interest: none
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