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Introduction

Thyroid nodules are common clinical findings, af-
fecting up to 50% of the general population. Women 
and the elderly exhibit a higher prevalence. While most 
of these nodules are benign, a small percentage can be 
malignant [1]. Ultrasound (US) imaging   is a vital tool 

for thyroid nodule assessment. It offers a noninvasive, 
cost-effective, and widely accessible means to determine 
nodule size, shape, echogenicity, and other features piv-
otal for malignancy risk stratification [2]. The Thyroid 
Imaging Reporting and Data System (TIRADS) provides 
a standardized classification for thyroid nodules based 
on US characteristics. This aids in predicting the risk of 
malignancy and guiding subsequent interventions [3]. 
Low-risk thyroid nodules, such as those that are benign, 
asymptomatic, or small, are generally managed through 
monitoring. This approach often includes regular check-
ups that encompass clinical and US examinations, and 
thyroid function tests [4,5]. However, nodules that display 
uncertain results, exhibit growth, or have suspicious fea-
tures might require a more invasive diagnostic procedure 
like fine-needle aspiration biopsy (FNAB) [6]. US guid-
ance also ensures the accuracy of FNAB by confirming 
that the tissue sampled genuinely represents the nodule  
in question [2,6].
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The interpretation and communication of find-
ings from FNAB of thyroid nodules are facilitated by a 
standardized system known as The Bethesda System for 
Reporting Thyroid Cytopathology [7]. The system com-
prises six categories, ranging from ‘Non-diagnostic or 
Unsatisfactory’ to ‘Malignant.’ Each category correlates 
with a specific risk of malignancy and suggests a particu-
lar management approach [2]. 

Recently, deep learning techniques have revolution-
ized medical imaging analysis. These techniques utilize 
convolutional neural networks (CNN) or other neural 
networks to learn complex patterns and extract valu-
able information from large datasets [8]. By analyzing 
these datasets and discerning intricate patterns, artifical 
intelligence (AI) algorithms can assist in differentiating 
benign and malignant nodules, thereby improving clin-
ical decision-making and potentially reducing the need 
for invasive procedures such as surgery [9]. Moreover, 
deep learning models have demonstrated remarkable re-
sults in diverse medical imaging applications, including 
tumor classification, anatomical structure segmentation, 
and abnormality detection [10]. 

The practical application of these advanced algo-
rithms and models requires not only an intricate under-
standing of the underlying theory but also the ability to 
write an effective code [11,12]. Researchers lacking a 
multidisciplinary team face a challenge in developing a 
deep learning model using medical data, as it necessi-
tates a blend of medical and programming proficiency. 
Python, a widely used programming language for AI and 
machine learning, can be difficult for individuals lacking 
extensive programming experience or expertise in the 
field [11-13]. Such obstacles can hinder the adoption and 
implementation of AI solutions, as well as the training 
and education of professionals interested in these ad-
vanced technologies [11,12]. ChatGPT, a large language 
model developed by OpenAI, has capabilities in pro-
gramming and coding that have been highlighted [14,15]. 
Currently, there are no studies that explore the utiliza-
tion of ChatGPT for the development of deep learning  
models. 

The current study seeks to address AI adoption-imple-
mentation challenges by exploring the use of ChatGPT, 
as a tool to facilitate the coding process and enhance 
learning for individuals working with Python. This study 
primarily aims to develop a deep learning model with 
the assistance of ChatGPT for thyroid nodules, using US 
images, with cytopathology of the FNAB serving as a 
reference. The hope is that this approach will streamline 
the development process and enable researchers and pro-
fessionals to leverage the capabilities of deep learning 
and AI technologies. 

Material and methods

Data collection
In this retrospective study, we included patients over 

18 years old who underwent thyroid US and subsequent 
FNAB for suspicious nodules between January 2017 
and January 2022. The inclusion criteria consisted of the 
availability of high-quality US images in the PACS sys-
tem, a corresponding FNAB diagnosis in the pathology 
database, and no history of previous thyroid surgery or 
ongoing thyroid-related treatments. The exclusion crite-
ria encompassed patients with inadequate image quality, 
and instances with missing or incomplete clinical data.

We gathered thyroid US images of the chosen pa-
tients from the PACS system, which contained informa-
tion on nodule size, shape, echogenicity, and other rel-
evant features critical for deep learning model training 
and analysis. The images were saved in a suitable format 
to ensure compliance with CNN requirements for image 
processing and analysis. 

In our analysis, we examined the demographic pro-
files, imaging characteristics, and cytological features 
of 1079 patients, each presenting with a single thyroid 
nodule. However, due to incomplete clinical, patholog-
ical, or radiological data, we excluded 18 patients from 
the study, resulting in a final count of 1061 patients for 
analysis.

Firstly, based on the FNAB cytology findings, we 
removed any samples that fell under the non-diagnostic 
category of the Bethesda classification from our dataset 
(n=180). For clarity and to remain consistent with the 
original Bethesda classification, we then divided the pa-
tients into five categories: benign, atypia of undetermi-
ned significance (AUS) follicular lesion of undetermined 
significance (FLUS), follicular neoplasm, and malignant.  

The enrolled patients had an average age of 41.61 
years, ranging from 18 to 82 years. Regarding gender 
distribution, 190 nodules were associated with male pa-
tients (21.6%), and 691 nodules were associated with fe-
male patients (78.4%).

As for the distribution of thyroid pathologies in the 
dataset, there were 428 images of benign (48.6%), 125 
images of AUS (14.2%), 79 images of FLUS (9.0%), 63 
images of follicular neoplasm (7.2%), and 186 images of 
malignant (21.1%) pathologies.

Due to the retrospective nature of the study the re-
quirement for patient consent was waived. The local 
ethics committee and IRB approval for this study were 
obtained.

ChatGPT assistance
We proceeded with the development of the deep 

learning model, employing ChatGPT to aid in code writ-
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ing. ChatGPT provided guidance on preprocessing steps, 
such as resizing, normalizing pixel values, and applying 
data augmentation techniques. It also assisted in choos-
ing the optimal network architecture, algorithm selection, 
model optimization, suggesting suitable hyperparame-
ters, and helped troubleshoot code-related issues, thereby 
ensuring an efficient and effective development process.

Data organization, software installation, and 
Python library setup
For implementing deep learning applications, our 

research utilized Python [13]. We used PyCharm, a free 
and open-source integrated development environment 
(IDE) with features such as code completion, debugging, 
and version control integration [16]. We used an NVIDIA 
GeForce GTX 1630 Ti laptop GPU (VRAM: 8 GB) for 
the execution.

The successful implementation of a deep learning al-
gorithm necessitates the installation and configuration of 
various Python libraries and packages [17]. We followed 
ChatGPT’s recommendations for a model creation re-
garding the necessary libraries and packages for our deep 
learning model.

ChatGPT assisted-deep learning model 
development and implementation
With the assistance of ChatGPT, we chose a CNN 

as the deep learning architecture for our study, given its 
proven effectiveness in medical image analysis [9]. We 
employed a step-by-step approach, using various Python 
libraries and choosing specific parameters based on our 
study’s requirements with ChatGPT’s help (supplemen-
tary file, fig 1). 

We imported the collected data into our Python envi-
ronment using the pandas library. The images and labels 
were loaded from subfolders. Next, we preprocessed the 
images using the OpenCV library by resizing them to a 
uniform size. Images with dimensions of 440x440 were 
resized to 128x128 using the bilinear interpolation meth-
od. We also normalized their pixel values, and applied 
data augmentation techniques to enhance the dataset’s 
size and improve the model’s generalization capabili-
ties. For the train-test split, we used the train_test_split 
function of the scikit-learn library, allocating 70% of the 
data for training, 15% for validation, and 15% for testing 
(supplementary file, fig 2). All test sets were independent 
of the training sets. This allocation is common practice 
in machine learning to ensure sufficient data for model 
evaluation and prevent overfitting [18].

In the model creation stage, we used TensorFlow and 
Keras libraries to build a CNN architecture. The model 
architecture consisted of two convolutional layers (each 
followed by a max pooling layer) and two fully connected 
layers. The output layer had five neurons, corresponding 

to the five classes of thyroid nodules, with a softmax acti-
vation function for outputting class probabilities. To pre-
vent overfitting, dropout layers were added with a rate of 
0.5. The input shape for the first convolutional layer was 
set to (128, 128, 3) to accommodate the resized and pre-
processed images. During the training process, we used 
the Adam optimizer, a popular and effective algorithm 
for deep learning tasks. We compiled the model with the 
Adam optimizer, sparse categorical cross-entropy loss, 
and accuracy as the performance metric [19]. We imple-
mented early stopping to monitor the validation loss and 
halt training if it did  not improve after a specified number 
of epochs, also restoring the best weights obtained during 
training. We then trained the model for 100 epochs, us-
ing the training and validation data, and applied the early 
stopping callback (supplementary file, fig 3). The train-
ing process stopped at the 29th epoch, utilizing the early 
stopping mechanism to prevent overfitting and optimize 
model performance. This setup ensured effective learn-
ing while avoiding overfitting of the training data.

After training the model, we evaluated its perfor-
mance using various metrics, including accuracy, preci-
sion, recall, and F1-score. We also calculated the 95% 
confidence intervals for each metric to determine the 
range of possible values. In addition, we used scikit-
learn’s roc_curve and auc functions to generate ROC 
curves and AUC values for each thyroid pathology. We 
plotted loss and accuracy curves to visualize the training 
process and identify any signs of overfitting or underfit-
ting.

Finally, we utilized the Gradient Weighted Class Ac-
tivation Mapping (Grad-CAM) visualization technique 
to discern the areas of the image that the model deemed 
significant for making its predictions (Supplementary 
file, fig 4). 

Statistical Analysis
We conducted descriptive statistics to summarize and 

describe the key characteristics of our dataset, including 
demographic data and thyroid pathology distribution. 
We assessed our deep learning model’s performance us-
ing metrics such as accuracy, precision, recall, F1-score, 
and the area under the ROC curve (AUC). In our study, 
we calculated 95% confidence intervals for each perfor-
mance metric (accuracy, precision, recall, F1-score, and 
AUC) to quantify the uncertainty around our model’s 
performance. 

Results

Model performance-training and validation set 
During the training process, the model demonstrated 

a consistent decrease in loss and a steady increase in ac-
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curacy (fig 1). The exact values for loss and accuracy at 
the end of training were 0.42 and 0.84, respectively, for 
the training set, and 0.82 and 0.82 for the validation set. 
We observed potential overfitting, evidenced by the con-
tinuous decrease in training loss, while validation loss 
stagnated. We addressed this through the implementation 
of regularization techniques such as dropout and weight 
decay, which improved the model’s generalizability.

Model performance-testing set 
The model’s performance showcases significant re-

sults across various metrics. The accuracy, a fundamental 
measure of the model’s overall correctness, is recorded 
at 0.81. This indicates that our model correctly predicted 
81% of the test data instances, making it considerably 
reliable. This high level of accuracy falls within a 95% 
confidence interval of 0.76 to 0.87, offering further as-
surance of the model’s performance. Table I provides a 
comprehensive view of the performance metrics on the 
testing set.

In terms of the deep learning model’s performance 
metrics on thyroid subgroups, the benign category is par-
ticularly noteworthy. This category exhibits high preci-
sion (0.78) and an exceptional recall (0.96), illustrating 
the model’s robust ability to accurately identify this cat-
egory while effectively minimizing false positives. This 
balance between precision and recall is mirrored in the 
F1-score of 0.86. Additionally, it’s worth noting that this 
category had the highest number of instances, with a total 
of 94. 

The follicular neoplasm category also presents sig-
nificant performance, with a perfect precision score of 
1.00. This indicates that every prediction made by the 
model for this category was accurate. However, the recall 
for this category was lower at 0.71, suggesting the model 
may not have detected all true positives. This balance is 
reflected in the F1-score of 0.83.

Similarly, the malignant category demonstrated strong 
results, with high precision (0.82) and recall (0.92). The 
F1-score for this category is 0.87, indicating a balanced 
performance between precision and recall. Overall, these 
results illustrate the deep learning model’s effective per-

formance across the different thyroid subgroups. Table III 
provides a comprehensive classification report, breaking 
down the performance metrics for each category under 
study. Figure 2 visually represents the ROC curves for 
each subgroup, along with their respective AUC values, 
further detailing the model’s performance on subgroup 
classification.

Fig 2. Subgroup categorization evaluation through ROC Curve 
and AUC values

Fig 1. Loss and accuracy curves for training and validation sets

Table I. Performance metrics on the testing set

Metric Performance 95% Confidence 
Interval

Accuracy 0.81 0.76 - 0.87
Precision 0.83 0.73 - 0.86
Recall 0.81 0.78 - 0.88
F1-score 0.80 0.75 - 0.86
AUC 0.89

AUC: The Area Under the Curve
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Grad-CAM heatmaps were utilized to visualize the 
features and patterns learnt  by the CNN. These heatmaps 
serve as validation, demonstrating that the algorithm 
correctly identified nodules, particularly the solid areas 
within these nodules, for feature extraction, classification 
and subsequent decision-making (fig 3).

The classification report in Table II presents the per-
formance metrics for each subcategory. 

Discussion

Our study aimed to develop a robust, accurate deep 
learning model with the assistance of  ChatGPT for the 
assessment of thyroid nodules using ultrasound images. 
The application of AI in thyroid nodule evaluation could 
potentially improve diagnostic accuracy, aid in decision-
making, reduce unnecessary invasive procedures, and 
contribute to personalized therapeutic strategies. 

This study’s unique proposition was the application 
of the ChatGPT language model to assist in the develop-
ment of the deep learning model. By leveraging Chat-
GPT’s capabilities, we streamlined the process of model 
development. The high accuracy achieved by our model, 
81%, suggests that the ChatGPT-assisted development 
process was effective. The model demonstrated strong 
performance across various thyroid pathology sub-
groups, particularly benign category, follicular neoplasm 
category, and malignant category. These results under-
line the model’s ability to distinguish different thyroid 
pathologies, highlighting its potential usefulness in clini-
cal decision-making. By offering a non-invasive tech-
nique for thyroid pathology classification via ultrasound, 
it presents a patient-centric alternative to more invasive 
diagnostics such as biopsies. Furthermore, integrating 
ChatGPT into the developmental phase fosters transpar-
ency and replicability, possibly mitigating radiologists’ 
workload and amplifying diagnostic precision. 

The accuracy of our model (81%) is comparable to 
other studies that have employed deep learning tech-
niques for thyroid nodule classification. For instance, Ma 
et al [20] reported an accuracy of 83.7%, while Song et 
al [21] achieved an accuracy of 85.6%. The slight differ-
ences in performance could be attributed to variations in 
dataset size, data quality, model architecture, and training 
parameters. 

The demographic characteristics of the patient sample 
in our study provide crucial insights into the prevalence 
and distribution of thyroid nodules. The gender distribu-
tion in our sample, with 21.6% male and 78.4% female 
patients, aligns with the broader literature, reflecting the 
known predilection of thyroid diseases for women [20-
24]. 

The originality and strength of this study lie in its in-
novative approach to merging traditional medical imag-
ing techniques with cutting-edge artificial intelligence. 
With this methodology used for the first time in the litera-
ture for thyroid nodules, the integration of ChatGPT into 
our deep learning model development brought about pro-
found enhancements. ChatGPT facilitated our decision-
making, especially when it came to the pivotal step of 
algorithm selection [25]. It not only shed light on the best 
network architecture for our study but also elaborated on 
various options with comprehensive explanations. The 
study’s meticulous data selection, involving comprehen-
sive inclusion and exclusion criteria, combined with the 
detailed preprocessing of images with ChatGPT, high-
lights its methodological rigor. The utilization of various 
evaluation metrics, such as accuracy, precision, recall, 
F1-score, and ROC curves, provides a holistic assessment 
of the model’s performance. Additionally, the adoption of 
Grad-CAM heatmaps to elucidate the model’s decision-
making process embodies a commitment to transparency 
and interpretability, critical in fostering trust among cli-
nicians and patients. The integration not only simplified 
the model creation process but also enhanced efficiency. 

We incorporated a CNN as the deep learning architec-
ture for our study, following ChatGPT’s advices. Com-
pared to other classification algorithms, a CNN requires 
significantly less pre-processing [26]. Whereas conven-
tional methods require manually engineered filters, with 

Fig 3. Thyroid nodule ımages and corresponding Grad-CAM 
heatmaps

Table II. A classification report for the different categories un-
der examination 

Category Precision Recall F1-score Support
AUS 0.82 0.48 0.61 29
Benign 0.78 0.96 0.86 94
FLUS 0.92 0.55 0.69 20
Follicular  
Neoplasm

1.00 0.71 0.83 17

Malignant 0.82 0.92 0.87 25
AUS: Atypia of Undetermined Significance, FLUS: Follicular  
Lesion of Undetermined Significance 
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sufficient training, CNNs can learn these filters or fea-
tures autonomously [26,27]. To address the overfitting 
problem, we employed regularization techniques such as 
dropout and weight decay and implemented early stop-
ping callback [28]. Early Stopping is a regularization 
technique for deep neural networks that stops training 
when parameter updates no longer begin to yield im-
prove on a validation set. In essence, technique stores 
and updates the current best parameters during training, 
and when parameter updates no longer yield an improve-
ment (after a set number of iterations) it stops training 
and use the last best parameters. It works as a regular-
izer by restricting the optimization procedure to a smaller 
volume of parameter space [28]. ChatGPT offered valu-
able assistance by providing suggestions in this manner. 
With optimization of functions dropout, weight decay, 
L2 regularization, it has  significantly improved the gen-
eralization capability of our model [29,30]. 

We employed a suite of evaluation metrics to thor-
oughly assess the performance of our deep learning mod-
el, namely accuracy, precision, recall, and the F1 score. 
The 95% confidence intervals provided for each metric 
reinforced the model’s reliability and its readiness for 
deployment in real-world scenarios [31,32].  AUS dem-
onstrates high precision but low recall, leading to a low 
F1 score. This indicates that while the model is precise in 
identifying AUS cases, it tends to miss a significant num-
ber of true positive cases. In contrast, benign category 
shows average precision and high recall, resulting in a 
high F1 score. This suggests that the model accurately 
identifies the majority of true positive cases in this cat-
egory, with a slight trade-off in precision. FLUS has high 
precision but low recall, yielding a moderate F1 score, 
implying that while the model is precise in classifying 
FLUS cases, it misses several true positive cases. Fol-
licular neoplasm exhibits perfect precision and average 
recall, leading to a high F1 score, signifying that the 
model correctly identifies all true positive cases, but its 
recall suggests that some cases are misclassified. Finally, 
the malignant category demonstrates high precision and 
recall, resulting in a high F1 score, indicating that the 
model performs well in this category, accurately identi-
fying most true positive cases while maintaining a good 
balance between precision and recall.

Understanding the decision-making process of deep 
learning models is crucial in clinical applications to build 
trust and facilitate the adoption of AI-assisted models. 
Methods such as Grad-CAM, LIME, or SHAP can be 
employed to enhance model interpretability and explain-
ability, ensuring that the model’s predictions align with 
human expert knowledge [33]. As suggested by Chat-
GPT, we used Grad-CAM heatmaps, which provided val-

uable insights into our model’s decision-making process. 
Selvaraju et al introduced Grad-CAM technique, which 
offers a visual explanation of deep learning models [34]. 
This method allows for enhanced understanding of mod-
els during detection or prediction tasks. In its operation, 
Grad-CAM takes an image, processes it using the des-
ignated model, and after predicting a label, applies the 
Grad-CAM technique to one of the Convolutional layers, 
typically the last one. Radiologists can then use a color 
visualization feature of Grad-CAM to view clearer im-
ages, facilitating more informed and confident decisions 
[35]. By visualizing the regions of the images that the 
model found most informative, we could verify that the 
model was focusing on relevant features. This technique 
assists in making deep learning models more interpret-
able and explainable [35].

While ChatGPT’s capabilities in programming and 
coding have been highlighted, a noticeable gap exists in 
the literature [14,15]. Specifically, no studies focus on us-
ing ChatGPT’s coding potential to create deep learning 
models. Our research successfully addressed this void. 
For coding context, in a study with undergraduate stu-
dents, ChatGPT proved instrumental in providing quick 
solutions, enhancing thinking abilities, simplifying de-
bugging, and boosting self-assurance during program-
ming tasks [14]. However, it was    not without  raising 
some concerns: there were instances of promoting lazi-
ness and occasional inaccurate responses. In software 
bug resolution, ChatGPT’s performance stood on par 
with other deep learning methods. Its unique strength 
lies in integrating additional information, such as an-
ticipated outputs or error signals [14]. This underscores 
ChatGPT’s potential in programming, but it is essential 
to approach its use with an awareness of its limitations.

In addition to assisting with the technical aspects of 
deep learning model development, ChatGPT also played 
a significant role in troubleshooting code-related issues 
throughout our study. These issues ranged from debug-
ging syntax errors to addressing problems related to data 
processing, data formatting, and the implementation of 
various deep learning libraries and frameworks. For in-
stance, ChatGPT was instrumental in resolving problems 
associated with the integration of TensorFlow and Keras 
into our deep learning model. It helped us identify and 
correct errors in our model’s architecture, the imple-
mentation of optimization algorithms, and the setting of 
hyperparameters. ChatGPT also guided us in the identi-
fication  of the most effective methods for data augmenta-
tion, normalization, and encoding. 

AUS/FLUS remain a challenge, at both the diagnostic 
and therapeutic level [36]. In this category, the risk of 
malignancy varies between 18% and 81% [37]. Within 
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this group, discerning malign samples from benign ones 
with the human eye can be challenging. In this context, 
we believe that artificial intelligence, especially with 
ChatGPT’s guidance, can be of assistance in differentiat-
ing between malign and benign cases within those cat-
egories. 

In our study which focused on the development of a 
deep learning model for the assessment of thyroid nod-
ules using US images, several limitations and potential 
areas for improvement were noted. Starting with Chat-
GPT’s limitations: firstly, our reliance on ChatGPT for 
guidance in algorithm development is worth highlight-
ing. While ChatGPT proved instrumental, offering in-
sights into the knowledge available at its last update, 
the rapidly evolving field of AI could introduce newer 
methodologies or paradigms postdating this knowl-
edge. If there have been groundbreaking advancements 
in CNN architectures or optimization techniques after 
the last update, ChatGPT would not be aware of them. 
Secondly,  it is crucial to understand the potential bias-
es embedded in ChatGPT’s recommendations. Derived 
from its training data, these biases, if unaddressed, can 
permeate its suggestions [38,39]. For instance, while 
CNN is well-known, there might be niche architectures 
specifically designed for certain types of medical im-
ages that the model does  not emphasize. The simplic-
ity of the CNN architecture chosen by ChatGPT might 
not recognize certain intricate features in ultrasound im-
ages, which could potentially undermine its diagnostic 
proficiency for specific pathologies [40,41]. Investigat-
ing more sophisticated architectures, such as DenseNets, 
ResNets, or Inception networks, might bolster perfor-
mance. These have demonstrated heightened aptitude for 
discerning complex image features, subsequently elevat-
ing classification accuracy [42,43]. Leveraging transfer 
learning techniques could enhance the model’s adaptive 
prowess [44]. Furthermore, a fundamental issue is the 
limited transparency into ChatGPT’s training data [38]. 
This training enables ChatGPT to generate code snippets 
that may seem innovative and useful at first glance, but 
it also raises critical concerns. Specifically, there is no 
way to ascertain whether the code it generates is an ex-
act or approximate replica of a code previously written 
by someone else. Utilizing such code in a commercial 
product or service could lead to complicated copyright 
disputes or even legal actions [38]. The ethical implica-
tions are equally significant. Therefore, while ChatGPT 
offers exciting possibilities, it is crucial to approach its 
output with caution and due diligence. It is imperative to 
scrutinize ChatGPT’s advice against expert opinion and 
industry knowledge [38]. Adopting a multidisciplinary 
approach, including both domain experts and machine 

learning specialists, can ensure the development process 
remains comprehensive and devoid of undue biases [39].

Regarding human experts or data limitations: the pri-
mary constraint is the quality and volume of our training 
dataset. If inadequate, this could compromise the model’s 
accuracy and generalizability [45]. If the dataset was col-
lected from a single institution or geographic location 
such as ours, the findings might not generalize well to 
other settings or populations. Certain demographic or 
clinical subgroups might be underrepresented in the 
study, making the model less effective for those popula-
tions. Additionally, in our retrospective study, we utilized 
the Bethesda 2017 criteria because our database includes 
patients from January 2017 to January 2022; however, it 
is  important to note that this may limit the generalizabil-
ity of our findings, as the updated Bethesda 2023 criteria 
are now available.

Future perspectives
With the rapid advancements in the field of artificial 

intelligence and deep learning, the future holds promis-
ing opportunities to enhance our current methodologies 
and models for diagnosing thyroid nodules. Building 
upon our ChatGPT-assisted deep learning model, several 
modifications can be considered for future implemen-
tations. First, incorporating a broader spectrum of data 
from diverse sources and demographics can bolster the 
model’s robustness and generalizability. Second, the im-
plementation of transfer learning using state-of-the-art 
architectures such as ResNet, Inception, or VGG can po-
tentially improve accuracy and reduce training time [44]. 
Furthermore, as ultrasound images can sometimes have 
inherent noise, incorporating advanced image processing 
and enhancement techniques before training can ensure 
cleaner and more focused data input. This will help in 
the extraction of more relevant features, thus improving 
diagnosis accuracy [46]. To reduce errors, future imple-
mentations can consider ensemble techniques, where 
multiple models’ predictions are combined to arrive at 
a final decision [47]. Lastly, continuous feedback loops 
can be established where expert radiologists review and 
correct the model’s predictions, creating an ever-evolv-
ing system that learns from its mistakes [48]. As we 
move forward, a synergy between human expertise and 
artificial intelligence, like the one we established with 
ChatGPT, will be pivotal in pushing the boundaries of 
medical diagnostics and patient care. To truly gauge the 
model’s viability in practical scenarios, external valida-
tions using distinct datasets and forward-looking clinical 
trials are essential. These investigations can validate the 
model’s versatility across varied populations, measure its 
influence on clinical choices, and spotlight potential en-
hancement areas [49].
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Conclusion

Our study highlights the potential of AI-assisted deep 
learning models, such as those developed with ChatGPT, 
in medical image analysis. As an initial study, we were 
able to achieve accuracy close to the success of more ad-
vanced neural networks in the literature. 
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