Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSulu, Cem
dc.contributor.authorOnay, Gönenç
dc.contributor.authorBakhdiyarli, Guldaran
dc.contributor.authorŞahin, Serdar
dc.contributor.authorDurcan, Emre
dc.contributor.authorKara, Zehra
dc.contributor.authorDemir, Ahmet Numan
dc.contributor.authorMartin, Özgür
dc.contributor.authorÖzkaya, Hande Mefkure
dc.contributor.authorTanrıöver, Necmettin
dc.contributor.authorComunoglu, Nil
dc.contributor.authorKizilkilic, Osman
dc.contributor.authorGazioglu, Nurperi
dc.contributor.authorKadıoglu, Pınar
dc.date.accessioned2025-09-15T10:31:58Z
dc.date.available2025-09-15T10:31:58Z
dc.date.issued2025en_US
dc.identifier.citationSulu, C., Onay, G., Bakhdiyarli, G., Sahin, S., Durcan, E., Kara, Z., Demir, A. N., Martin, O., Ozkaya, H. M., Tanriover, N., Comunoglu, N., Kizilkilic, O., Gazioglu, N., & Kadioglu, P. (2025). Revisiting mortality in acromegaly using machine learning. Endocrine, 10.1007/s12020-025-04422-5. Advance online publication. https://doi.org/10.1007/s12020-025-04422-5en_US
dc.identifier.urihttps://doi.org/10.1007/s12020-025-04422-5
dc.identifier.urihttps://hdl.handle.net/20.500.14124/10150
dc.description.abstractObjective To evaluate predictors of mortality in acromegaly using machine learning (ML) models. Methods We analyzed 607 patients with acromegaly. A grid search was applied to compare five types of prediction models in 1,200 configurations. Each model predicted mortality based on 40 disease characteristics, assessed using the Matthews’ correlation coefficient (MCC) and the area under the curve (AUC) metrics. To ensure robust and reliable predictions, we constructed a virtual ensemble model by generating 100 Explainable Boosting Machine (EBM) variants and evaluating their performance across 50 random train–test splits. Results The single EBM model fitted to all data achieved an MCC of 0.88 and an AUC of 0.99. Feature importance analysis identified hypertension, first-line transsphenoidal surgery (TSS), disease duration, baseline insulin-like growth factor 1 levels, hypopituitarism, and repeat TSS as key predictors of mortality. A virtual ensemble prediction model showed good generalization performance, with an MCC of 0.64 ± 0.08 and an AUC of 0.96 ± 0.015 across 50 random data splits. 58% of the cohort were female, and 66.9% had macroadenomas. The first-line treatment was TSS in 83.2% of cases. Additional treatments were repeat TSS (16.6%), somatostatin analogs (57%), cabergoline (35.6%), pegvisomant (10.9%), and radiotherapy (16.6%), achieving a 77.8% overall success rate. Hypertension (37.2%) and diabetes (36.4%) were the most common comorbidities. The mortality rate was 8.4%, mainly from cardiovascular disease (41.2%) and cancer (21.6%). Conclusion ML demonstrated strong performance in classifying survival status and identifying mortality predictors in acromegaly. The ensemble model provides a reliable and interpretable tool, balancing accuracy with the robustness required for clinical decision-making. Explore related subjectsen_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofEndocrineen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectAcromegalyen_US
dc.subjectHypertensionen_US
dc.subjectMachine learningen_US
dc.subjectMortalityen_US
dc.subjectTranssphenoidal surgeryen_US
dc.titleRevisiting mortality in acromegaly using machine learningen_US
dc.typearticleen_US
dc.authorid0000-0003-1605-1593en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.institutionauthorMartin, Özgür
dc.identifier.doi10.1007/s12020-025-04422-5en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidN-1198-2015en_US
dc.authorscopusid37091077000en_US
dc.identifier.pmidPMID: 40944885en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster