Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification
dc.contributor.author | Gökmen, Neslihan | |
dc.contributor.author | Kocadağlı, Ozan | |
dc.contributor.author | Cevik, Serdar | |
dc.contributor.author | Aktan, Çağdaş | |
dc.contributor.author | Eghbali, Reza | |
dc.contributor.author | Liu, Chunlei | |
dc.date.accessioned | 2025-09-30T06:18:39Z | |
dc.date.available | 2025-09-30T06:18:39Z | |
dc.date.issued | 2025 | en_US |
dc.identifier.citation | Gökmen, N., Kocadağlı, O., Cevik, S., Aktan, C., Eghbali, R., & Liu, C. (2025). Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification. Medical & biological engineering & computing, 10.1007/s11517-025-03447-2. Advance online publication. https://doi.org/10.1007/s11517-025-03447-2 | en_US |
dc.identifier.issn | 1741-0444 | |
dc.identifier.uri | https://doi.org/10.1007/s11517-025-03447-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/10153 | |
dc.description.abstract | Glioblastoma (GBM) carries poor prognosis; epidermal-growth-factor-receptor (EGFR) mutations further shorten survival. We propose a fully automated MRI-based decision-support system (DSS) that segments GBM and classifies EGFR status, reducing reliance on invasive biopsy. The segmentation module (UNet SI) fuses multiresolution, entropy-ranked shearlet features with CNN features, preserving fine detail through identity long-skip connections, to yield a Lightweight 1.9 M-parameter network. Tumour masks are fed to an Inception ResNet-v2 classifier via a 512-D bottleneck. The pipeline was five-fold cross-validated on 98 contrast-enhanced T1-weighted scans (Memorial Hospital; Ethics 24.12.2021/008) and externally validated on BraTS 2019. On the Memorial cohort UNet SI achieved Dice 0.873, Jaccard 0.853, SSIM 0.992, HD95 24.19 mm. EGFR classification reached Accuracy 0.960, Precision 1.000, Recall 0.871, AUC 0.94, surpassing published state-of-the-art results. Inference time is ≤ 0.18 s per slice on a 4 GB GPU. By combining shearlet-enhanced segmentation with streamlined classification, the DSS delivers superior EGFR prediction and is suitable for integration into routine clinical workflows. © International Federation for Medical and Biological Engineering 2025. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Medical and Biological Engineering and Computing | en_US |
dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
dc.subject | Automatic segmentation | en_US |
dc.subject | Brain tumours | en_US |
dc.subject | Deep learning | en_US |
dc.subject | EGFR mutation | en_US |
dc.subject | Glioblastoma | en_US |
dc.title | Enhancing AI-based decision support system with automatic brain tumor segmentation for EGFR mutation classification | en_US |
dc.type | article | en_US |
dc.authorid | 0000-0003-4354-7383 | en_US |
dc.department | Fakülteler, Fen Edebiyat Fakültesi, İstatistik Bölümü | en_US |
dc.institutionauthor | Kocadağlı, Ozan | |
dc.identifier.doi | 10.1007/s11517-025-03447-2 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorwosid | AAO-2482-2021 | en_US |
dc.authorscopusid | 57208567048 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.identifier.wos | WOS:001575744300001 | en_US |
dc.identifier.scopus | 2-s2.0-105016742554 | en_US |
dc.identifier.pmid | PMID: 40983859 | en_US |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
ҎubMed [267]
PubMed Central -
Տcopus [1587]
Scopus | Abstract and citation database -
Ꮃeb of Science [1794]
Web of Science platform