Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Searching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensions
| dc.contributor.author | Ocak, Ayla | |
| dc.contributor.author | Bekdaş, Gebrail | |
| dc.contributor.author | Nigdeli, Sinan Melih | |
| dc.contributor.author | Işıkdağ, Ümit | |
| dc.contributor.author | Geem, Zong Woo | |
| dc.date.accessioned | 2025-12-17T06:45:40Z | |
| dc.date.available | 2025-12-17T06:45:40Z | |
| dc.date.issued | 2025 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.14124/10239 | |
| dc.description.abstract | The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in structures. By repeating the optimization processes for multiple load scenarios, it is possible to create a data set that shows the optimum design section properties. However, this step means repeating the same processes to produce the optimum cross-sectional dimensions. Artificial intelligence technology offers a short-cut solution to this by providing the opportunity to train itself with previously generated optimum cross-sectional dimensions and infer new cross-sectional dimensions. By processing the data, the artificial neural network can generate models that predict the cross-section for a new structural element. In this study, an optimization process is applied to a simple tubular column and an I-section beam, and the results are compiled to create a data set that presents the optimum section dimensions as a class. The harmony search (HS) algorithm, which is a metaheuristic method, was used in optimization. An artificial neural network (ANN) was created to predict the cross-sectional dimensions of the sample structural elements. The neural architecture search (NAS) method, which incorporates many metaheuristic algorithms designed to search for the best artificial neural network architecture, was applied. In this method, the best values of various parameters of the neural network, such as activation function, number of layers, and neurons, are searched for in the model with a tool called HyperNetExplorer. Model metrics were calculated to evaluate the prediction success of the developed model. An effective neural network architecture for column and beam elements is obtained. © 2025 by the authors. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | en_US |
| dc.relation.ispartof | Information (Switzerland) | en_US |
| dc.rights | info:eu-repo/semantics/restrictedAccess | en_US |
| dc.subject | artificial neural network; harmony search algorithm; hyperparameter optimization; neural architecture search | en_US |
| dc.title | Searching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensions | en_US |
| dc.type | article | en_US |
| dc.department | Fakülteler, Mimarlık Fakültesi, Mimarlık Bölümü | en_US |
| dc.institutionauthor | Işıkdağ, Ümit | |
| dc.identifier.doi | 10.3390/info16080660 | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.identifier.scopus | 2-s2.0-105014319686 | en_US |
Bu öğenin dosyaları:
| Dosyalar | Boyut | Biçim | Göster |
|---|---|---|---|
|
Bu öğe ile ilişkili dosya yok. |
|||
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1614]
Scopus | Abstract and citation database














