Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara

Basit öğe kaydını göster

dc.contributor.authorGökmen, Neslihan
dc.contributor.authorKocadağlı, Ozan
dc.contributor.authorLiu, Chunlei
dc.date.accessioned2025-12-22T11:11:42Z
dc.date.available2025-12-22T11:11:42Z
dc.date.issued2025en_US
dc.identifier.citationGökmen, N., Kocadağlı, O., & Liu, C. (2025). Detection of EGFR gene mutations in glioblastoma: Utilizing information complexity in developing AI-based decision support system. Computers in biology and medicine, 198(Pt B), 111240. https://doi.org/10.1016/j.compbiomed.2025.111240en_US
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2025.111240
dc.identifier.urihttps://hdl.handle.net/20.500.14124/10284
dc.description.abstractGlioblastoma is the most common and deadly brain cancer, known for its rapid progression and heterogeneity at microscopic and macroscopic levels. This heterogeneity is influenced by factors such as tumor cell density, involvement of normal tissue, and gene expression profiles. Mutations in EGFR gene are associated with shorter recurrence intervals and poorer survival outcomes in GBM patients. Non-invasive imaging techniques like MRI can provide valuable insights into EGFR mutations. To reduce the risks of brain biopsies and sampling errors, this study introduces an AI-based decision support system (DSS) for classifying EGFR mutations in GBM patients through automated segmentation of tumorous regions using MRI. The DSS employs deep neural networks (Inception ResNet-v2, DenseNet-121, and ResNet-50) trained on a GBM dataset from Memorial Hospital in Istanbul, which includes three MRI input types: expert segmented, without segmentation, and without tumor. Information criteria (IC) were used to guide model selection by balancing predictive performance and structural complexity. DenseNet-121 showed superior performance, with accuracy scores of 0.952, 0.942, and 0.938 for expert segmented, without segmentation, and absence of tumor inputs, respectively. Precision and recall metrics were also highest for DenseNet-121, especially with expert-segmented inputs. A multivariate statistical analysis confirmed significant differences across model performances. The results underscore the value of integrating information criteria into deep learning pipelines to enhance model robustness and interpretability in medical imaging applications.en_US
dc.language.isoengen_US
dc.relation.ispartofComputers in biology and medicineen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectBrain tumorsen_US
dc.subjectDeep learningen_US
dc.subjectGBMen_US
dc.subjectInformation criteriaen_US
dc.subjectModel complexityen_US
dc.titleDetection of EGFR gene mutations in glioblastoma: Utilizing information complexity in developing AI-based decision support systemen_US
dc.typearticleen_US
dc.authorid0000-0003-4354-7383en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, İstatistik Bölümüen_US
dc.institutionauthorKocadağlı, Ozan
dc.identifier.doi10.1016/j.compbiomed.2025.111240en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.pmidPMID: 41176824en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster