Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydın, Yaren
dc.contributor.authorIşıkdağ, Ümit
dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorNigdeli, Sinan Melih
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2023-06-20T12:14:59Z
dc.date.available2023-06-20T12:14:59Z
dc.date.issued2023en_US
dc.identifier.citationAydın, Y., Işıkdağ, Ü., Bekdaş, G., Nigdeli, S. M., & Geem, Z. W.. (2023). Use of Machine Learning Techniques in Soil Classification. Sustainability, 15(3), 2374. https://doi.org/10.3390/su15032374en_US
dc.identifier.issn20711050
dc.identifier.urihttps://hdl.handle.net/20.500.14124/5277
dc.identifier.urihttps://doi.org/10.3390/su15032374
dc.description.abstractIn the design of reliable structures, the soil classification process is the first step, which involves costly and time-consuming work including laboratory tests. Machine learning (ML), which has wide use in many scientific fields, can be utilized for facilitating soil classification. This study aims to provide a concrete example of the use of ML for soil classification. The dataset of the study comprises 805 soil samples based on the soil drillings of the new Gayrettepe–Istanbul Airport metro line construction. The dataset has both missing data and class imbalance. In the data preprocessing stage, first, data imputation techniques were applied to deal with the missing data. Two different imputation techniques were tested, and finally, the data were imputed with the KNN imputer. Later, a balance was achieved with the synthetic minority oversampling technique (SMOTE). After the preprocessing, a series of ML algorithms were tested with 10-fold cross-validation. Unlike the studies conducted in previous research, new gradient-boosting methods such as XGBoost, LightGBM, and CatBoost were tested, high classification accuracy rates of up to +90% were observed, and a significant improvement in the accuracy of prediction (when compared with previous research) was achieved. © 2023 by the authors.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofSustainability (Switzerland)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectclassificationen_US
dc.subjectensemble learningen_US
dc.subjectmachine learningen_US
dc.subjectsoilen_US
dc.titleUse of Machine Learning Techniques in Soil Classificationen_US
dc.typearticleen_US
dc.authorid0000-0002-2660-0106en_US
dc.departmentRektörlük, Rektörlüğe Bağlı Birimler, Enformatik Bölümüen_US
dc.institutionauthorIşıkdağ, Ümit
dc.identifier.doi10.3390/su15032374en_US
dc.identifier.volume15en_US
dc.identifier.issue3en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidA-3306-2012en_US
dc.authorscopusid25223356600en_US
dc.identifier.wosqualityQ1en_US
dc.identifier.wosWOS:000931372700001
dc.identifier.scopus2-s2.0-85147887344


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster