Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.advisorProf. Dr. Gülay Başarır
dc.contributor.authorÖzdinç, Mesut
dc.date.accessioned2023-09-01T11:58:24Z
dc.date.available2023-09-01T11:58:24Z
dc.date.issued2022en_US
dc.date.submitted2022
dc.identifier.urihttps://hdl.handle.net/20.500.14124/5476
dc.description.abstractYüksek frekanslı açıklayıcı değişkenlerin olduğu durumlarda regresyon analizine olanak sağlayan MIDAS (Mixed Data Sampling) regresyon yöntemlerinin, parametrik olmayan türleriyle ilgili gelişmeye açık konular incelenmiştir. Tez, parametrik olmayan MIDAS regresyon yönteminin öncü çalışmalarından olup, büyük ve akışkan veri içeren ilk araştırmalardandır. Parametrik ve parametrik olmayan MIDAS regresyon yöntemlerinin literatür özeti, tasarlanan deneyin performans karşılaştırması ve gerçek veriler üzerinden elde edilen bulguların tartışılması sunulmuştur. Literatür özetinde, yüksek frekanslı değişkenlerin dönüştürülmesinde yaygın kullanılan, zaman toplulaştırma ve iterasyon yöntemlerinin sakıncalarına ve MIDAS regresyon yönteminin çözüm önerilerine değinilmiştir. Ayrıca, Köprü Denklemi Yöntemi ve Durum Uzayı Modelleri incelenmiştir. Otoregresif zaman serileri, MIDAS parametrik ağırlıklandırma işlevleri, veri matrisleri ve MIDAS türlerine odaklanılmış; Almon Polinomu, Üssel Almon, Beta ve Adımsal ağırlıklandırma işlevleri anlatılmış ve parametrik olmayan regresyon yöntemleri incelenmiştir. Splayn regresyon türleri ve çekirdek regresyon modellerinin ardından, Düzleştirilmiş MIDAS regresyon modeli ele alınmıştır. Çekirdek regresyon yöntemleri hakkında genel bilgi verilmiş, MIDAS regresyon yönteminde potansiyel kullanılabilirliği tartışılmıştır. Deneyde, artan-azalan, kısa-uzun gecikme uzunluğu, değişkenlik ölçeklendirilmesiyle stres testleri yapılarak, elde edilen sonuçlar kıyaslanmıştır. Stres testi için tasarlanmış ağırlıklandırma işlevleri, rassal veri üretimi için kullanılmıştır. Uygulama için, bağımlı değişken olarak Türkiye'de kaydedilen COVID-19 günlük vakaları ve yüksek frekanslı bağımsız değişken olarak saatlik COVID-19 içerikli paylaşılan Türkçe Twitter mesajlarının sayısı üzerinden, MIDAS regresyon yöntemleri çalıştırılmıştır. Bulgulara göre, parametrik olmayan MIDAS regresyon yöntemi, yüksek frekanslı serinin uzun gecikmeli değerlerinde, uzun vadeli etkinin kısa vadeden fazla olduğu, artan-azalan değerler aldığı durumlarda, parametrik yöntemlerden daha etkili bir yöntemdir. Çekirdek regresyon yöntemlerinin kısıtlamaları ve hesaplama yükü ileri çalışmalarda ele alınmalıdır.en_US
dc.language.isoturen_US
dc.publisherMimar Sinan Güzel Sanatlar Üniversitesi, Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectİstatistiken_US
dc.subjectMIDAS Regresyon modellerien_US
dc.titleParametrik olmayan MIDAS regresyonen_US
dc.typedoctoralThesisen_US
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, İstatistik Anabilim Dalıen_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster