Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMese, Ismail
dc.contributor.authorİnan, Neslihan Gökmen
dc.contributor.authorKocadagli, Ozan
dc.contributor.authorSalmaslioglu, Artur
dc.contributor.authorYildirim, Duzgun
dc.date.accessioned2024-11-11T09:34:12Z
dc.date.available2024-11-11T09:34:12Z
dc.date.issued2023en_US
dc.identifier.citationMese, I., Inan, N. G., Kocadagli, O., Salmaslioglu, A., & Yildirim, D. (2023). ChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artificial intelligence. Medical Ultrasonography, 25(4), 375–383. https://doi.org/10.11152/mu-4306en_US
dc.identifier.issn1844-4172 / 2066-8643
dc.identifier.urihttps://doi.org/10.11152/mu-4306
dc.identifier.urihttps://hdl.handle.net/20.500.14124/6661
dc.description.abstractAims: To develop a deep learning model, with the aid of ChatGPT, for thyroid nodules, utilizing ultrasound images. The cytopathology of the fine needle aspiration biopsy (FNAB) serves as the baseline. Material and methods: After securing IRB approval, a retrospective study was conducted, analyzing thyroid ultrasound images and FNAB results from 1,061 patients between January 2017 and January 2022. Detailed examinations of their demographic profiles, imaging characteristics, and cytological features were conducted. The images were used for training a deep learning model to identify various thyroid pathologies. ChatGPT assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting. Results: The model demonstrated an accuracy of 0.81 on the testing set, within a 95% confidence interval of 0.76 to 0.87. It presented remarkable results across thyroid subgroups, particularly in the benign category, with high precision (0.78) and recall (0.96), yielding a balanced F1-score of 0.86. The malignant category also displayed high precision (0.82) and recall (0.92), with an F1-score of 0.87. Conclusions: The study demonstrates the potential of artificial intelligence, particularly ChatGPT, in aiding the creation of robust deep learning models for medical image analysis. © 2023 Societatea Romana de Ultrasonografie in Medicina si Biologie. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherIuliu Hatieganu Medical Publishing Houseen_US
dc.relation.ispartofMed Ultrasonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectMedical informatics applicationsen_US
dc.subjectThyroid noduleen_US
dc.subjectUltrasonographyen_US
dc.titleChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artifical intelligenceen_US
dc.typearticleen_US
dc.authorid0000-0002-7855-1297en_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, İstatistik Bölümüen_US
dc.institutionauthorİnan, Neslihan Gökmen
dc.identifier.doi10.11152/mu-4306en_US
dc.identifier.volume25en_US
dc.identifier.issue4en_US
dc.identifier.startpage375en_US
dc.identifier.endpage383en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidIZV-2611-2023en_US
dc.authorscopusid58304320600en_US
dc.identifier.wosqualityQ3en_US
dc.identifier.wosWOS:001163599100002en_US
dc.identifier.scopus2-s2.0-85181395232en_US
dc.identifier.pmidPMID: 38150678en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster