Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Rolling in the Deep Convolutional Neural Networks
dc.contributor.author | Soydaner, Derya | |
dc.date.accessioned | 2022-06-08T18:37:55Z | |
dc.date.available | 2022-06-08T18:37:55Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 2147-6799 | |
dc.identifier.issn | 2147-6799 | |
dc.identifier.uri | https://app.trdizin.gov.tr/makale/TXpNeE9EWXdNQT09 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/706 | |
dc.description.abstract | Over the past years, convolutional neural networks (CNNs) have achieved remarkable success in deep learning.The performance of CNN-based models has caused major advances in a wide range of tasks from computer vision tonatural language processing. However, the exposition of the theoretical calculations behind the convolution operation israrely emphasized. This study aims to provide better understanding the convolution operation entirely by means of divinginto the theory of how backpropagation algorithm works for CNNs. In order to explain the training of CNNs clearly, theconvolution operation on images is explained in detail and backpropagation in CNNs is highlighted. Besides, LabeledFaces in the Wild (LFW) dataset which is frequently used in face recognition applications is used to visualize what CNNslearn. The intermediate activations of a CNN trained on the LFW dataset are visualized to gain an insight about how CNNsperceive the world. Thus, the feature maps are interpreted visually as well, alongside the training process. | en_US |
dc.language.iso | eng | en_US |
dc.relation.ispartof | International Journal of Intelligent Systems and Applications in Engineering | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bilgisayar Bilimleri | en_US |
dc.subject | Yapay Zeka | en_US |
dc.title | Rolling in the Deep Convolutional Neural Networks | en_US |
dc.type | article | en_US |
dc.department | . . . | en_US |
dc.institutionauthor | . . . | |
dc.identifier.volume | 7 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 222 | en_US |
dc.identifier.endpage | 226 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | TXpNeE9EWXdNQT09 | en_US |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
TRDizin [756]
TR Index