Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSoydaner, Derya
dc.date.accessioned2022-06-08T18:37:55Z
dc.date.available2022-06-08T18:37:55Z
dc.date.issued2019
dc.identifier.issn2147-6799
dc.identifier.issn2147-6799
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TXpNeE9EWXdNQT09
dc.identifier.urihttps://hdl.handle.net/20.500.14124/706
dc.description.abstractOver the past years, convolutional neural networks (CNNs) have achieved remarkable success in deep learning.The performance of CNN-based models has caused major advances in a wide range of tasks from computer vision tonatural language processing. However, the exposition of the theoretical calculations behind the convolution operation israrely emphasized. This study aims to provide better understanding the convolution operation entirely by means of divinginto the theory of how backpropagation algorithm works for CNNs. In order to explain the training of CNNs clearly, theconvolution operation on images is explained in detail and backpropagation in CNNs is highlighted. Besides, LabeledFaces in the Wild (LFW) dataset which is frequently used in face recognition applications is used to visualize what CNNslearn. The intermediate activations of a CNN trained on the LFW dataset are visualized to gain an insight about how CNNsperceive the world. Thus, the feature maps are interpreted visually as well, alongside the training process.en_US
dc.language.isoengen_US
dc.relation.ispartofInternational Journal of Intelligent Systems and Applications in Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Bilimlerien_US
dc.subjectYapay Zekaen_US
dc.titleRolling in the Deep Convolutional Neural Networksen_US
dc.typearticleen_US
dc.department. . .en_US
dc.institutionauthor. . .
dc.identifier.volume7en_US
dc.identifier.issue4en_US
dc.identifier.startpage222en_US
dc.identifier.endpage226en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinidTXpNeE9EWXdNQT09en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster