Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorErdil, Mehtap
dc.contributor.authorYılgor, Nural
dc.contributor.authorKocadağlı, Ozan
dc.date.accessioned2025-01-09T19:59:39Z
dc.date.available2025-01-09T19:59:39Z
dc.date.issued2024
dc.identifier.issn2146-1880
dc.identifier.issn2146-698X
dc.identifier.urihttps://doi.org/10.17474/artvinofd.1402203
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1237330
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7149
dc.description.abstractIn this study, 200 wood waste samples from different origins were analysed by Inductive coupled plasma optical emission spectrometry (ICP-OES) and Inductively coupled plasma mass spectrometry (ICP-MS) for 11 elements (lead, cadmium, aluminium, iron, zinc, copper, chrome, arsenic, nickel, mercury and sulphur) that are likely to present in wood waste. In the study, the data as non-hazardous and hazardous was evaluated based on the standard (TS EN ISO 17225-1, 2021). Artificial neural network (ANN) and random forest (RF) analyses were then applied to better analyze and interpret the data. In this way, statistical separation of wood wastes as non-hazardous and hazardous was realized. Accordingly, it was shown that random forest analysis with an accuracy rate of 100% was better than artificial neural network analysis with an accuracy rate of 99%. Results suggested that wood wastes could be recycled and entered the production cycle in a way to contribute to the national economy or be incinerated with appropriate methods in bioenergy production in an environmentally friendly way which would be possible with the accurate classification of these wastes. In this study, the classification of wood wastes as hazardous and non-hazardous with 100% accuracy rate using ICP data with machine learning approaches, which is not encountered in the literature review.en_US
dc.language.isoengen_US
dc.relation.ispartofArtvin Çoruh Üniversitesi Orman Fakültesi Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRandom foresten_US
dc.subjectArtificial neural networken_US
dc.subjectICP dataen_US
dc.subjectWood wastesen_US
dc.titleClassification of wooden wastes with machine learning approachesen_US
dc.typearticleen_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.17474/artvinofd.1402203
dc.identifier.volume25en_US
dc.identifier.issue1en_US
dc.identifier.startpage22en_US
dc.identifier.endpage33en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1237330
dc.indekslendigikaynakTR-Dizin
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster