Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Classification of wooden wastes with machine learning approaches
dc.contributor.author | Erdil, Mehtap | |
dc.contributor.author | Yılgor, Nural | |
dc.contributor.author | Kocadağlı, Ozan | |
dc.date.accessioned | 2025-01-09T19:59:39Z | |
dc.date.available | 2025-01-09T19:59:39Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 2146-1880 | |
dc.identifier.issn | 2146-698X | |
dc.identifier.uri | https://doi.org/10.17474/artvinofd.1402203 | |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1237330 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7149 | |
dc.description.abstract | In this study, 200 wood waste samples from different origins were analysed by Inductive coupled plasma optical emission spectrometry (ICP-OES) and Inductively coupled plasma mass spectrometry (ICP-MS) for 11 elements (lead, cadmium, aluminium, iron, zinc, copper, chrome, arsenic, nickel, mercury and sulphur) that are likely to present in wood waste. In the study, the data as non-hazardous and hazardous was evaluated based on the standard (TS EN ISO 17225-1, 2021). Artificial neural network (ANN) and random forest (RF) analyses were then applied to better analyze and interpret the data. In this way, statistical separation of wood wastes as non-hazardous and hazardous was realized. Accordingly, it was shown that random forest analysis with an accuracy rate of 100% was better than artificial neural network analysis with an accuracy rate of 99%. Results suggested that wood wastes could be recycled and entered the production cycle in a way to contribute to the national economy or be incinerated with appropriate methods in bioenergy production in an environmentally friendly way which would be possible with the accurate classification of these wastes. In this study, the classification of wood wastes as hazardous and non-hazardous with 100% accuracy rate using ICP data with machine learning approaches, which is not encountered in the literature review. | en_US |
dc.language.iso | eng | en_US |
dc.relation.ispartof | Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Random forest | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | ICP data | en_US |
dc.subject | Wood wastes | en_US |
dc.title | Classification of wooden wastes with machine learning approaches | en_US |
dc.type | article | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.17474/artvinofd.1402203 | |
dc.identifier.volume | 25 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 22 | en_US |
dc.identifier.endpage | 33 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.trdizinid | 1237330 | |
dc.indekslendigikaynak | TR-Dizin | |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
TRDizin [1114]
TR Index