Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
A machine learning approach on occupant number prediction for indoor spaces
dc.contributor.author | Isikdag, Umit | |
dc.contributor.author | Sahin, Kemal | |
dc.contributor.author | Cansiz, Sergen | |
dc.date.accessioned | 2025-01-09T20:03:30Z | |
dc.date.available | 2025-01-09T20:03:30Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1682-1750 | |
dc.identifier.uri | https://doi.org/10.5194/isprs-archives-XLII-4-275-2018 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7494 | |
dc.description | Delft University of Technology; et al.; FIG; University of Applied Sciences Stuttgart; University of South Wales; University of Twente | en_US |
dc.description | ISPRS TC IV Mid-Term Symposium on 3D Spatial Information Science - The Engine of Change -- 1 October 2018 through 5 October 2018 -- Delft -- 140766 | en_US |
dc.description.abstract | The knowledge about the occupancy of an indoor space can serve to various domains ranging from emergency response to energy efficiency in buildings. The literature in the field presents various methods for occupancy detection. Data gathered for occupancy detection, can also be used to predict the number of occupants at a certain indoor space and time. The aim of this research was to determine the number of occupants in an indoor space, through the utilisation of information acquired from a set of sensors and machine learning techniques. The sensor types used in this research was a sound level sensor, temperature/humidity level sensor and an air quality level sensor. Based on data acquired from these sensors six automatic classification techniques are employed and tested with the aim of automatically detecting the number of occupants in an indoor space by making use of multi-sensor information. The results of the tests demonstrated that machine learning techniques can be used as a tool for prediction of number of occupants in an indoor space. © Authors 2018. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | International Society for Photogrammetry and Remote Sensing | en_US |
dc.relation.ispartof | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives | en_US |
dc.rights | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.subject | Indoor | en_US |
dc.subject | IoT | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Occupancy | en_US |
dc.subject | Sensors | en_US |
dc.title | A machine learning approach on occupant number prediction for indoor spaces | en_US |
dc.type | conferenceObject | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.5194/isprs-archives-XLII-4-275-2018 | |
dc.identifier.volume | 42 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 343 | en_US |
dc.identifier.endpage | 349 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85056176868 | en_US |
dc.identifier.scopusquality | Q3 | |
dc.indekslendigikaynak | Scopus | |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database