Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorIsikdag, Umit
dc.contributor.authorSahin, Kemal
dc.contributor.authorCansiz, Sergen
dc.date.accessioned2025-01-09T20:03:30Z
dc.date.available2025-01-09T20:03:30Z
dc.date.issued2018
dc.identifier.issn1682-1750
dc.identifier.urihttps://doi.org/10.5194/isprs-archives-XLII-4-275-2018
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7494
dc.descriptionDelft University of Technology; et al.; FIG; University of Applied Sciences Stuttgart; University of South Wales; University of Twenteen_US
dc.descriptionISPRS TC IV Mid-Term Symposium on 3D Spatial Information Science - The Engine of Change -- 1 October 2018 through 5 October 2018 -- Delft -- 140766en_US
dc.description.abstractThe knowledge about the occupancy of an indoor space can serve to various domains ranging from emergency response to energy efficiency in buildings. The literature in the field presents various methods for occupancy detection. Data gathered for occupancy detection, can also be used to predict the number of occupants at a certain indoor space and time. The aim of this research was to determine the number of occupants in an indoor space, through the utilisation of information acquired from a set of sensors and machine learning techniques. The sensor types used in this research was a sound level sensor, temperature/humidity level sensor and an air quality level sensor. Based on data acquired from these sensors six automatic classification techniques are employed and tested with the aim of automatically detecting the number of occupants in an indoor space by making use of multi-sensor information. The results of the tests demonstrated that machine learning techniques can be used as a tool for prediction of number of occupants in an indoor space. © Authors 2018.en_US
dc.language.isoengen_US
dc.publisherInternational Society for Photogrammetry and Remote Sensingen_US
dc.relation.ispartofInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archivesen_US
dc.rightsMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.subjectIndooren_US
dc.subjectIoTen_US
dc.subjectMachine learningen_US
dc.subjectOccupancyen_US
dc.subjectSensorsen_US
dc.titleA machine learning approach on occupant number prediction for indoor spacesen_US
dc.typeconferenceObjecten_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.5194/isprs-archives-XLII-4-275-2018
dc.identifier.volume42en_US
dc.identifier.issue4en_US
dc.identifier.startpage343en_US
dc.identifier.endpage349en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85056176868en_US
dc.identifier.scopusqualityQ3
dc.indekslendigikaynakScopus
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1543]
    Scopus | Abstract and citation database

Basit öğe kaydını göster