Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorIşıkdağ, Ümit
dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorAydın, Yaren
dc.contributor.authorApak, Sudi
dc.contributor.authorHong, Junhee
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2025-01-09T20:03:31Z
dc.date.available2025-01-09T20:03:31Z
dc.date.issued2024
dc.identifier.issn2071-1050
dc.identifier.urihttps://doi.org/10.3390/su162310756
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7519
dc.description.abstractThis study aims to contribute to the reduction of carbon dioxide and the production of hydrogen through an investigation of the photocatalytic reaction process. Machine learning algorithms can be used to predict the hydrogen yield in the photocatalytic carbon dioxide reduction process. Although regression-based approaches provide good results, the accuracy achieved with classification algorithms is not very high. In this context, this study presents a new method, Adaptive Neural Architecture Search (NAS) using metaheuristics, to improve the capacity of ANNs in estimating the hydrogen yield in the photocatalytic carbon dioxide reduction process through classification. The NAS process was carried out with a tool named HyperNetExplorer, which was developed with the aim of finding the ANN architecture providing the best prediction accuracy through changing ANN hyperparameters, such as the number of layers, number of neurons in each layer, and the activation functions of each layer. The nature of the NAS process in this study was adaptive, since the process was accomplished through optimization algorithms. The ANNs discovered with HyperNetExplorer demonstrated significantly higher prediction performance than the classical ML algorithms. The results indicated that the NAS helped to achieve better performance in the estimation of the hydrogen yield in the photocatalytic carbon dioxide reduction process. © 2024 by the authors.en_US
dc.description.sponsorshipKorea Institute of Energy Technology Evaluation and Planning, KETEP; Ministry of Trade, Industry and Energy, MOTIE, (RS-2024-00442817); Ministry of Trade, Industry and Energy, MOTIE; Gachon University, (GCU-202403910001); Gachon Universityen_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofSustainability (Switzerland)en_US
dc.rightsMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.subjectclassificationen_US
dc.subjecthydrogenen_US
dc.subjecthyperparameter optimizationen_US
dc.subjectmachine learningen_US
dc.subjectphotocatalyticen_US
dc.titleAdaptive Neural Architecture Search Using Meta-Heuristics: Discovering Fine-Tuned Predictive Models for Photocatalytic CO2 Reductionen_US
dc.typearticleen_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.3390/su162310756
dc.identifier.volume16en_US
dc.identifier.issue23en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85211762035en_US
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakScopus
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1543]
    Scopus | Abstract and citation database

Basit öğe kaydını göster