Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Estimation of Optimum Design of a 3-Bar Truss System with Decision Tree Algorithm
dc.contributor.author | Ocak, Ayla | |
dc.contributor.author | Bekdaş, Gebrail | |
dc.contributor.author | Işıkdağ, Ümit | |
dc.contributor.author | Nigdeli, Sinan Melih | |
dc.date.accessioned | 2025-01-09T20:03:33Z | |
dc.date.available | 2025-01-09T20:03:33Z | |
dc.date.issued | 2023 | |
dc.identifier.isbn | 978-303150150-0 | |
dc.identifier.issn | 2367-3370 | |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-50151-7_9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7555 | |
dc.description | 6th International Conference on Intelligent Computing and Optimization, ICO 2023 -- 27 April 2023 through 28 April 2023 -- Hua Hin -- 304329 | en_US |
dc.description.abstract | Truss systems are structures that require care and cost due to the materials and workmanship used. In the design of such systems, the process of optimizing the material volume is necessary for optimum cost. In terms of convenience in application, the production of materials in standard sections also reduces labor costs. In this study, the cross-sectional areas of the bars were optimized to minimize the volume for the design of a 3-bar truss system. Harmony Search Algorithm (HSA), a metaheuristic algorithm inspired by nature, was used in the optimization. A data set was prepared by determining the optimum cross-sectional areas for certain load and stress ranges, and a machine learning prediction model based on the load and stress information with the decision tree classification algorithm was produced. For this purpose, the bar cross-section areas in the data were converted to standard cross-sections and divided into classes. With the produced model, under the desired load and stress values, the bar cross-sectional areas of the system were estimated on a class basis. When the results were examined, it was determined that the prediction model produced with the optimum data was successful at a level of approximately 95% in estimating the bar sections. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Lecture Notes in Networks and Systems | en_US |
dc.rights | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.subject | Decision tree classification | en_US |
dc.subject | Harmony search algorithm | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Metaheuristic algorithm | en_US |
dc.subject | Optimization | en_US |
dc.subject | Truss system | en_US |
dc.title | Estimation of Optimum Design of a 3-Bar Truss System with Decision Tree Algorithm | en_US |
dc.type | conferenceObject | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1007/978-3-031-50151-7_9 | |
dc.identifier.volume | 854 LNNS | en_US |
dc.identifier.startpage | 88 | en_US |
dc.identifier.endpage | 97 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85180625400 | en_US |
dc.identifier.scopusquality | Q4 | |
dc.indekslendigikaynak | Scopus | |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database