Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOcak, Ayla
dc.contributor.authorBekdaş, Gebrail
dc.contributor.authorIşıkdağ, Ümit
dc.contributor.authorNigdeli, Sinan Melih
dc.date.accessioned2025-01-09T20:03:33Z
dc.date.available2025-01-09T20:03:33Z
dc.date.issued2023
dc.identifier.isbn978-303150150-0
dc.identifier.issn2367-3370
dc.identifier.urihttps://doi.org/10.1007/978-3-031-50151-7_9
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7555
dc.description6th International Conference on Intelligent Computing and Optimization, ICO 2023 -- 27 April 2023 through 28 April 2023 -- Hua Hin -- 304329en_US
dc.description.abstractTruss systems are structures that require care and cost due to the materials and workmanship used. In the design of such systems, the process of optimizing the material volume is necessary for optimum cost. In terms of convenience in application, the production of materials in standard sections also reduces labor costs. In this study, the cross-sectional areas of the bars were optimized to minimize the volume for the design of a 3-bar truss system. Harmony Search Algorithm (HSA), a metaheuristic algorithm inspired by nature, was used in the optimization. A data set was prepared by determining the optimum cross-sectional areas for certain load and stress ranges, and a machine learning prediction model based on the load and stress information with the decision tree classification algorithm was produced. For this purpose, the bar cross-section areas in the data were converted to standard cross-sections and divided into classes. With the produced model, under the desired load and stress values, the bar cross-sectional areas of the system were estimated on a class basis. When the results were examined, it was determined that the prediction model produced with the optimum data was successful at a level of approximately 95% in estimating the bar sections. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.rightsKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.subjectDecision tree classificationen_US
dc.subjectHarmony search algorithmen_US
dc.subjectMachine learningen_US
dc.subjectMetaheuristic algorithmen_US
dc.subjectOptimizationen_US
dc.subjectTruss systemen_US
dc.titleEstimation of Optimum Design of a 3-Bar Truss System with Decision Tree Algorithmen_US
dc.typeconferenceObjecten_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1007/978-3-031-50151-7_9
dc.identifier.volume854 LNNSen_US
dc.identifier.startpage88en_US
dc.identifier.endpage97en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85180625400en_US
dc.identifier.scopusqualityQ4
dc.indekslendigikaynakScopus
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1543]
    Scopus | Abstract and citation database

Basit öğe kaydını göster