Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
House Price Prediction: A Case Study for Istanbul
dc.contributor.author | Taşabat, Semra Erpolat | |
dc.contributor.author | Ersen, Mert | |
dc.date.accessioned | 2025-01-09T20:03:35Z | |
dc.date.available | 2025-01-09T20:03:35Z | |
dc.date.issued | 2023 | |
dc.identifier.isbn | 978-981197880-7 | |
dc.identifier.isbn | 978-981197879-1 | |
dc.identifier.uri | https://doi.org/10.1007/978-981-19-7880-7_14 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7599 | |
dc.description.abstract | One of the biggest investments people make is undoubtedly the purchase and sale of real estate. The most important of the real estates is the purchase and sale of housing. The housing market, which is also an indicator of social wealth, is one of the important elements of the economy. Changes in house prices affect not only the housing market but also the economy indirectly. For this reason, the correct determination and estimation of the financial values of the houses are of great importance in terms of the stability, reliability, and sustainability of the housing market. Hedonic price model (HPM) and artificial neural networks (ANNs) are the most widely used methods in estimating housing prices, which have a very heterogeneous structure. HPM is an estimation method based on linear regression analysis that explains the relationship between dependent and independent variables with linear relationships and requires some assumptions, while ANN is a method without limitations. In this study, a random sample was selected by creating a list of houses sold in Istanbul between 2015 and 2019. Using this dataset, house sales prices were estimated with HPM and ANN models. For this purpose, different criteria have been taken into account, especially in the region where the residences are located. From the results obtained, it was observed that ANN gave more consistent results than HPM. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer Nature | en_US |
dc.relation.ispartof | Industry 4.0 and the Digital Transformation of International Business | en_US |
dc.rights | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Hedonic price model | en_US |
dc.subject | Multilayer perception | en_US |
dc.title | House Price Prediction: A Case Study for Istanbul | en_US |
dc.type | bookPart | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1007/978-981-19-7880-7_14 | |
dc.identifier.startpage | 233 | en_US |
dc.identifier.endpage | 250 | en_US |
dc.relation.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
dc.identifier.scopus | 2-s2.0-85173325589 | en_US |
dc.identifier.scopusquality | N/A | |
dc.indekslendigikaynak | Scopus | |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database