Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTaşabat, Semra Erpolat
dc.contributor.authorErsen, Mert
dc.date.accessioned2025-01-09T20:03:35Z
dc.date.available2025-01-09T20:03:35Z
dc.date.issued2023
dc.identifier.isbn978-981197880-7
dc.identifier.isbn978-981197879-1
dc.identifier.urihttps://doi.org/10.1007/978-981-19-7880-7_14
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7599
dc.description.abstractOne of the biggest investments people make is undoubtedly the purchase and sale of real estate. The most important of the real estates is the purchase and sale of housing. The housing market, which is also an indicator of social wealth, is one of the important elements of the economy. Changes in house prices affect not only the housing market but also the economy indirectly. For this reason, the correct determination and estimation of the financial values of the houses are of great importance in terms of the stability, reliability, and sustainability of the housing market. Hedonic price model (HPM) and artificial neural networks (ANNs) are the most widely used methods in estimating housing prices, which have a very heterogeneous structure. HPM is an estimation method based on linear regression analysis that explains the relationship between dependent and independent variables with linear relationships and requires some assumptions, while ANN is a method without limitations. In this study, a random sample was selected by creating a list of houses sold in Istanbul between 2015 and 2019. Using this dataset, house sales prices were estimated with HPM and ANN models. For this purpose, different criteria have been taken into account, especially in the region where the residences are located. From the results obtained, it was observed that ANN gave more consistent results than HPM. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.ispartofIndustry 4.0 and the Digital Transformation of International Businessen_US
dc.rightsKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.subjectArtificial neural networken_US
dc.subjectHedonic price modelen_US
dc.subjectMultilayer perceptionen_US
dc.titleHouse Price Prediction: A Case Study for Istanbulen_US
dc.typebookParten_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1007/978-981-19-7880-7_14
dc.identifier.startpage233en_US
dc.identifier.endpage250en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.scopus2-s2.0-85173325589en_US
dc.identifier.scopusqualityN/A
dc.indekslendigikaynakScopus
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

  • Տcopus [1543]
    Scopus | Abstract and citation database

Basit öğe kaydını göster