Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
A Comparison of Optimization Algorithms for Deep Learning
dc.contributor.author | Soydaner, Derya | |
dc.date.accessioned | 2025-01-09T20:07:54Z | |
dc.date.available | 2025-01-09T20:07:54Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0218-0014 | |
dc.identifier.issn | 1793-6381 | |
dc.identifier.uri | https://doi.org/10.1142/S0218001420520138 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7838 | |
dc.description.abstract | In recent years, we have witnessed the rise of deep learning. Deep neural networks have proved their success in many areas. However, the optimization of these networks has become more difficult as neural networks going deeper and datasets becoming bigger. Therefore, more advanced optimization algorithms have been proposed over the past years. In this study, widely used optimization algorithms for deep learning are examined in detail. To this end, these algorithms called adaptive gradient methods are implemented for both supervised and unsupervised tasks. The behavior of the algorithms during training and results on four image datasets, namely, MNIST, CIFAR-10, Kaggle Flowers and Labeled Faces in the Wild are compared by pointing out their differences against basic optimization algorithms. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | International Journal of Pattern Recognition and Artificial Intelligence | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Adaptive gradient methods | en_US |
dc.subject | optimization | en_US |
dc.subject | deep learning | en_US |
dc.subject | image processing | en_US |
dc.title | A Comparison of Optimization Algorithms for Deep Learning | en_US |
dc.type | article | en_US |
dc.authorid | SOYDANER, DERYA/0000-0002-3212-6711 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1142/S0218001420520138 | |
dc.identifier.volume | 34 | en_US |
dc.identifier.issue | 13 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q4 | |
dc.identifier.wos | WOS:000599932000004 | |
dc.identifier.scopus | 2-s2.0-85085365178 | |
dc.identifier.scopusquality | Q3 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1748]
Web of Science platform