Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Nuclear binding energy predictions using neural networks: Application of the multilayer perceptron
dc.contributor.author | Yuksel, Esra | |
dc.contributor.author | Soydaner, Derya | |
dc.contributor.author | Bahtiyar, Huseyin | |
dc.date.accessioned | 2025-01-09T20:07:55Z | |
dc.date.available | 2025-01-09T20:07:55Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0218-3013 | |
dc.identifier.issn | 1793-6608 | |
dc.identifier.uri | https://doi.org/10.1142/S0218301321500178 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7839 | |
dc.description.abstract | In recent years, artificial neural networks and their applications for large data sets have become a crucial part of scientific research. In this work, we implement the Multilayer Perceptron (MLP), which is a class of feedforward artificial neural network (ANN), to predict ground-state binding energies of atomic nuclei. Two different MLP architectures with three and four hidden layers are used to study their effects on the predictions. To train the MLP architectures, two different inputs are used along with the latest atomic mass table and changes in binding energy predictions are also analyzed in terms of the changes in the input channel. It is seen that using appropriate MLP architectures and putting more physical information in the input channels, MLP can make fast and reliable predictions for binding energies of atomic nuclei, which is also comparable to the microscopic energy density functionals. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | International Journal of Modern Physics E | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Deep neural networks | en_US |
dc.subject | feedforward artificial neural network | en_US |
dc.subject | statistical modeling | en_US |
dc.subject | nuclear binding energy | en_US |
dc.title | Nuclear binding energy predictions using neural networks: Application of the multilayer perceptron | en_US |
dc.type | article | en_US |
dc.authorid | Bahtiyar, Huseyin/0000-0001-5952-1677 | |
dc.authorid | Yuksel, Esra/0000-0002-2892-3208 | |
dc.authorid | SOYDANER, DERYA/0000-0002-3212-6711 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1142/S0218301321500178 | |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 3 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q4 | |
dc.identifier.wos | WOS:000638116200004 | |
dc.identifier.scopus | 2-s2.0-85102254086 | |
dc.identifier.scopusquality | Q3 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform