Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHortacsu, M.
dc.date.accessioned2025-01-09T20:07:55Z
dc.date.available2025-01-09T20:07:55Z
dc.date.issued2018
dc.identifier.issn1687-7357
dc.identifier.issn1687-7365
dc.identifier.urihttps://doi.org/10.1155/2018/8621573
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7850
dc.description.abstractMost of the theoretical physics known today is described by using a small number of differential equations. For linear systems, different forms of the hypergeometric or the confluent hypergeometric equations often suffice to describe the system studied. These equations have power series solutions with simple relations between consecutive coefficients and/or can be represented in terms of simple integral transforms. If the problem is nonlinear, one often uses one form of the Painleve equations. There are important examples, however, where one has to use higher order equations. Heun equation is one of these examples, which recently is often encountered in problems in general relativity and astrophysics. Its special and confluent forms take names as Mathieu, Lame, and Coulomb spheroidal equations. For these equations whenever a power series solution is written, instead of a two-way recursion relation between the coefficients in the series, we find one between three or four different ones. An integral transformsolution using simpler functions also is not obtainable. The use of this equation in physics and mathematical literature exploded in the later years, more than doubling the number of papers with these solutions in the last decade, compared to time period since this equation was introduced in 1889 up to 2008. We use SCI data to conclude this statement, which is not precise, but in the correct ballpark. Here this equation will be introduced and examples for its use, especially in general relativity literature, will be given.en_US
dc.description.sponsorshipScience Academy, Turkeyen_US
dc.description.sponsorshipThe author is grateful to Professors Cemsinan Deliduman and Kayhan Ulker for providing the author with a shelter at Mimar Sinan Fine Arts University during the author's days in retirement. The author is indebted to Tolga Birkandan for collaboration and technical assistance and is grateful to Professor Dr. Andre Ronveaux for informing the author of a slight error in [9]. The author thanks Science Academy, Turkey, for support.en_US
dc.language.isoengen_US
dc.publisherHindawi Ltden_US
dc.relation.ispartofAdvances in High Energy Physicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleHeun Functions and Some of Their Applications in Physicsen_US
dc.typereviewArticleen_US
dc.authoridHortacsu, Mahmut/0000-0002-5046-6365
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1155/2018/8621573
dc.identifier.volume2018en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ3
dc.identifier.wosWOS:000440481500001
dc.identifier.scopus2-s2.0-85051140930
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster