Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Optimizing artificial neural network architectures for enhanced soil type classification
dc.contributor.author | Aydin, Yaren | |
dc.contributor.author | Bekdas, Gebrail | |
dc.contributor.author | Isikdag, Uemit | |
dc.contributor.author | Nigdeli, Sinan Melih | |
dc.contributor.author | Geem, Zong Woo | |
dc.date.accessioned | 2025-01-09T20:07:56Z | |
dc.date.available | 2025-01-09T20:07:56Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 2005-307X | |
dc.identifier.issn | 2092-6219 | |
dc.identifier.uri | https://doi.org/10.12989/gae.2024.37.3.263 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7871 | |
dc.description.abstract | Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Techno-Press | en_US |
dc.relation.ispartof | Geomechanics and Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | artificial neural networks | en_US |
dc.subject | bio-inspired methods | en_US |
dc.subject | hyperparameter optimization | en_US |
dc.subject | soil classification | en_US |
dc.title | Optimizing artificial neural network architectures for enhanced soil type classification | en_US |
dc.type | article | en_US |
dc.authorid | Aydin, Yaren/0000-0002-5134-9822 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.12989/gae.2024.37.3.263 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 263 | en_US |
dc.identifier.endpage | 277 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | |
dc.identifier.wos | WOS:001257961700006 | |
dc.identifier.scopus | 2-s2.0-85192908381 | |
dc.identifier.scopusquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform