Mimar Sinan Fine Arts University Institutional Repository
DSpace@MSGSÜ digitally stores academic resources such as books, articles, dissertations, bulletins, reports, research data published directly or indirectly by Mimar Sinan Fine Arts University in international standarts, helps track the academic performance of the university, provides long term preservation for resources and makes publications available to Open Access in accordance with their copyright to increase the effect of publications.Search MSGSÜ
The beta Liu-type estimator:simulation and application
| dc.contributor.author | Erkoc, Ali | |
| dc.contributor.author | Ertan, Esra | |
| dc.contributor.author | Algamal, Zakariya Yahya | |
| dc.contributor.author | Akay, Kadri Ulas | |
| dc.date.accessioned | 2025-01-09T20:07:59Z | |
| dc.date.available | 2025-01-09T20:07:59Z | |
| dc.date.issued | 2023 | |
| dc.identifier.issn | 2651-477X | |
| dc.identifier.uri | https://doi.org/10.15672/hujms.1145607 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14124/7910 | |
| dc.description.abstract | The Beta Regression Model (BRM) is commonly used while analyzing data where the dependent variable is restricted to the interval [0, 1] for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in the case that dependent variable follows a Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators in terms of the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Hacettepe Univ, Fac Sci | en_US |
| dc.relation.ispartof | Hacettepe Journal of Mathematics and Statistics | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | & nbsp | en_US |
| dc.subject | Beta regression model | en_US |
| dc.subject | Liu-type estimator | en_US |
| dc.subject | maximum likelihood estimator | en_US |
| dc.subject | multicollinearity | en_US |
| dc.title | The beta Liu-type estimator:simulation and application | en_US |
| dc.type | article | en_US |
| dc.authorid | Algamal, Zakariya/0000-0002-0229-7958 | |
| dc.authorid | Akay, Kadri Ulas/0000-0002-8668-2879 | |
| dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
| dc.identifier.doi | 10.15672/hujms.1145607 | |
| dc.identifier.volume | 52 | en_US |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.startpage | 828 | en_US |
| dc.identifier.endpage | 840 | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.identifier.wosquality | Q2 | |
| dc.identifier.wos | WOS:001011921200020 | |
| dc.identifier.scopus | 2-s2.0-85161308710 | |
| dc.identifier.scopusquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.snmz | KA_20250105 |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||
This item appears in the following Collection(s)
-
Տcopus [1643]
Scopus | Abstract and citation database -
Ꮃeb of Science [1845]
Web of Science platform














