Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
The beta Liu-type estimator:simulation and application
dc.contributor.author | Erkoc, Ali | |
dc.contributor.author | Ertan, Esra | |
dc.contributor.author | Algamal, Zakariya Yahya | |
dc.contributor.author | Akay, Kadri Ulas | |
dc.date.accessioned | 2025-01-09T20:07:59Z | |
dc.date.available | 2025-01-09T20:07:59Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 2651-477X | |
dc.identifier.uri | https://doi.org/10.15672/hujms.1145607 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7910 | |
dc.description.abstract | The Beta Regression Model (BRM) is commonly used while analyzing data where the dependent variable is restricted to the interval [0, 1] for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in the case that dependent variable follows a Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators in terms of the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Hacettepe Univ, Fac Sci | en_US |
dc.relation.ispartof | Hacettepe Journal of Mathematics and Statistics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | & nbsp | en_US |
dc.subject | Beta regression model | en_US |
dc.subject | Liu-type estimator | en_US |
dc.subject | maximum likelihood estimator | en_US |
dc.subject | multicollinearity | en_US |
dc.title | The beta Liu-type estimator:simulation and application | en_US |
dc.type | article | en_US |
dc.authorid | Algamal, Zakariya/0000-0002-0229-7958 | |
dc.authorid | Akay, Kadri Ulas/0000-0002-8668-2879 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.15672/hujms.1145607 | |
dc.identifier.volume | 52 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 828 | en_US |
dc.identifier.endpage | 840 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q2 | |
dc.identifier.wos | WOS:001011921200020 | |
dc.identifier.scopus | 2-s2.0-85161308710 | |
dc.identifier.scopusquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform