Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorElmas, Bahadir
dc.date.accessioned2025-01-09T20:07:59Z
dc.date.available2025-01-09T20:07:59Z
dc.date.issued2021
dc.identifier.issn1300-1884
dc.identifier.issn1304-4915
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.689038
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/1138844
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7915
dc.description.abstractIdentifying trees by images of barks via Deep Learning method has a potentially useful contribution to many areas, such as revision of forests, preparation of sustainable management plans for forest resources, operations and processing of trees for paper and furniture industries, preservation of trees having vital importance to environments, definition of species and sub-species of fruits for orcharding, for amateur purposes, and entirely for handling tree sources efficiently. Even though the current progress in Deep Learning has proven to be impressive, the lack or insufficiency of datasets has limited the use of Deep Learning on identification of tree species from barks images. In order make contribution to the researches on this field, and to prove that tree identification via images of barks with high accuracy is possible, 24686 bark images of 59 tree species from different parts of Turkey has been collected within a span of a year, and the data set is used for this work. With the use of seven pre-trained convolutional neural networks, AlexNet, DenseNet201, ResNet18, ResNet50, ResNet101, VGG16, VGG19. It has been demonstrated that identification of tree species by images of barks is possible through transfer learning method. Additionally, it has been inferred that transfer learning method provides fast and accurate solutions to classification problems. Furthermore, the impact of the depth, layer, number of parameters and batch size of the networks has been analyzed. While the average accuracy of all the networks, regarding the ratio of number of images and training data, is between 93.21% and 95.89%, the average of accuracy of the two most successful networks is 99.46%.en_US
dc.language.isoturen_US
dc.publisherGazi Univ, Fac Engineering Architectureen_US
dc.relation.ispartofJournal of The Faculty of Engineering and Architecture of Gazi Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIdentifying species of treesen_US
dc.subjectbark imagesen_US
dc.subjectpre-trained networksen_US
dc.subjecttransfer learningen_US
dc.titleIdentifying species of trees through bark images by convolutional neural networks with transfer learning methoden_US
dc.title.alternativeEvrişimli sinir ağları ile ağaç kabuğu görüntülerinden ağaç türlerinin transfer öğrenme yöntemiyle tanımlanmasıen_US
dc.typearticleen_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.17341/gazimmfd.689038
dc.identifier.volume36en_US
dc.identifier.issue3en_US
dc.identifier.startpage1254en_US
dc.identifier.endpage1269en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ4
dc.identifier.wosWOS:000655278700007
dc.identifier.scopus2-s2.0-85107663378
dc.identifier.trdizinid1138844
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster