Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Variable selection with genetic algorithm and multivariate adaptive regression splines in the presence of multicollinearity
dc.contributor.author | Kilinc, Betul Kan | |
dc.contributor.author | Asikgil, Baris | |
dc.contributor.author | Erar, Aydin | |
dc.contributor.author | Yazici, Berna | |
dc.date.accessioned | 2025-01-09T20:08:00Z | |
dc.date.available | 2025-01-09T20:08:00Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 2313-626X | |
dc.identifier.issn | 2313-3724 | |
dc.identifier.uri | https://doi.org/10.21833/ijaas.2016.12.004 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7925 | |
dc.description.abstract | In this paper, it is aimed to determine the true regressors explaining the dependent variable in multiple linear regression models and also to find the best model by using two different approaches in the presence of low, medium and high multicollinearity. These approaches compared in this study are genetic algorithm and multivariate adaptive regression splines. A comprehensive Monte Carlo experiment is performed in order to examine the performance of these approaches. This study exposes that nonparametric methods can be preferred for variable selection in order to obtain the best model when there is a multicollinearity problem in the small, medium or large data sets. (C) 2016 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | en_US |
dc.description.sponsorship | Anadolu University Scientific Research Projects Commission [1204F065] | en_US |
dc.description.sponsorship | This study was supported by Anadolu University Scientific Research Projects Commission under the grant no 1204F065. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Inst Advanced Science Extension | en_US |
dc.relation.ispartof | International Journal of Advanced and Applied Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Variable selection | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Genetic algorithm | en_US |
dc.subject | Multivariate adaptive regression splines | en_US |
dc.title | Variable selection with genetic algorithm and multivariate adaptive regression splines in the presence of multicollinearity | en_US |
dc.type | article | en_US |
dc.authorid | ASIKGIL, BARIS/0000-0002-1408-3797 | |
dc.authorid | Kan Kilinc, Betul/0000-0002-3746-2327 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.21833/ijaas.2016.12.004 | |
dc.identifier.volume | 3 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 26 | en_US |
dc.identifier.endpage | 31 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | |
dc.identifier.wos | WOS:000391109400004 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Ꮃeb of Science [1746]
Web of Science platform