Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKilinc, Betul Kan
dc.contributor.authorAsikgil, Baris
dc.contributor.authorErar, Aydin
dc.contributor.authorYazici, Berna
dc.date.accessioned2025-01-09T20:08:00Z
dc.date.available2025-01-09T20:08:00Z
dc.date.issued2016
dc.identifier.issn2313-626X
dc.identifier.issn2313-3724
dc.identifier.urihttps://doi.org/10.21833/ijaas.2016.12.004
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7925
dc.description.abstractIn this paper, it is aimed to determine the true regressors explaining the dependent variable in multiple linear regression models and also to find the best model by using two different approaches in the presence of low, medium and high multicollinearity. These approaches compared in this study are genetic algorithm and multivariate adaptive regression splines. A comprehensive Monte Carlo experiment is performed in order to examine the performance of these approaches. This study exposes that nonparametric methods can be preferred for variable selection in order to obtain the best model when there is a multicollinearity problem in the small, medium or large data sets. (C) 2016 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.description.sponsorshipAnadolu University Scientific Research Projects Commission [1204F065]en_US
dc.description.sponsorshipThis study was supported by Anadolu University Scientific Research Projects Commission under the grant no 1204F065.en_US
dc.language.isoengen_US
dc.publisherInst Advanced Science Extensionen_US
dc.relation.ispartofInternational Journal of Advanced and Applied Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVariable selectionen_US
dc.subjectMulticollinearityen_US
dc.subjectGenetic algorithmen_US
dc.subjectMultivariate adaptive regression splinesen_US
dc.titleVariable selection with genetic algorithm and multivariate adaptive regression splines in the presence of multicollinearityen_US
dc.typearticleen_US
dc.authoridASIKGIL, BARIS/0000-0002-1408-3797
dc.authoridKan Kilinc, Betul/0000-0002-3746-2327
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.21833/ijaas.2016.12.004
dc.identifier.volume3en_US
dc.identifier.issue12en_US
dc.identifier.startpage26en_US
dc.identifier.endpage31en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A
dc.identifier.wosWOS:000391109400004
dc.indekslendigikaynakWeb of Scienceen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster