Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Machine Learning Models for Ecofriendly Optimum Design of Reinforced Concrete Columns
dc.contributor.author | Aydin, Yaren | |
dc.contributor.author | Bekdas, Gebrail | |
dc.contributor.author | Nigdeli, Sinan Melih | |
dc.contributor.author | Isikdag, Umit | |
dc.contributor.author | Kim, Sanghun | |
dc.contributor.author | Geem, Zong Woo | |
dc.date.accessioned | 2025-01-09T20:08:03Z | |
dc.date.available | 2025-01-09T20:08:03Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | https://doi.org/10.3390/app13074117 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/7956 | |
dc.description.abstract | CO2 emission is one of the biggest environmental problems and contributes to global warming. The climatic changes due to the damage to nature is triggering a climate crisis globally. To prevent a possible climate crisis, this research proposes an engineering design solution to reduce CO2 emissions. This research proposes an optimization-machine learning pipeline and a set of models trained for the prediction of the design variables of an ecofriendly concrete column. In this research, the harmony search algorithm was used as the optimization algorithm, and different regression models were used as predictive models. Multioutput regression is applied to predict the design variables such as section width, height, and reinforcement area. The results indicated that the random forest algorithm performed better than all other machine learning algorithms that have also achieved high accuracy. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Applied Sciences-Basel | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | reinforced concrete | en_US |
dc.subject | optimization | en_US |
dc.subject | predictive modeling | en_US |
dc.subject | carbon emission | en_US |
dc.subject | harmony search | en_US |
dc.title | Machine Learning Models for Ecofriendly Optimum Design of Reinforced Concrete Columns | en_US |
dc.type | article | en_US |
dc.authorid | Geem, Zong Woo/0000-0002-0370-5562 | |
dc.authorid | Isikdag, Umit/0000-0002-2660-0106 | |
dc.authorid | Bekdas, Gebrail/0000-0002-7327-9810 | |
dc.authorid | Aydin, Yaren/0000-0002-5134-9822 | |
dc.authorid | Kim, Sanghun/0000-0002-1423-6116 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.3390/app13074117 | |
dc.identifier.volume | 13 | en_US |
dc.identifier.issue | 7 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q1 | |
dc.identifier.wos | WOS:000971168600001 | |
dc.identifier.scopus | 2-s2.0-85152525871 | |
dc.identifier.scopusquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform