Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBekdas, Gebrail
dc.contributor.authorAydin, Yaren
dc.contributor.authorIsikdag, Umit
dc.contributor.authorSadeghifam, Aidin Nobahar
dc.contributor.authorKim, Sanghun
dc.contributor.authorGeem, Zong Woo
dc.date.accessioned2025-01-09T20:08:04Z
dc.date.available2025-01-09T20:08:04Z
dc.date.issued2023
dc.identifier.issn2071-1050
dc.identifier.urihttps://doi.org/10.3390/su15119061
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7971
dc.description.abstractCooling load refers to the amount of energy to be removed from a space (or consumed) to bring that space to an acceptable temperature or to maintain the temperature of a space at an acceptable range. The study aimed to develop a series of models and determine the most accurate ones in the prediction of the cooling load of low-rise tropical buildings based on their basic architectural and structural characteristics. In this context, a series of machine learning (regression) algorithms were tested during the research to determine the most accurate/efficient prediction model. In this regard, a data set consisting of ten features indicating the basic characteristics of the building (floor area, aspect ratio, ceiling height, window material, external wall material, roof material, window wall ratio north faced, window wall ratio south faced, horizontal shading, orientation) were used to predict the cooling load of a low-rise tropical building. The dataset was generated utilizing a set of generative and algorithmic design tools. Following the dataset generation, a series of regression models were tested to find the most accurate model to predict the cooling load. The results of the tests with different algorithms revealed that the relationship between the predictor variables and cooling load could be efficiently modeled through Histogram Gradient Boosting and Stacking models.en_US
dc.language.isoengen_US
dc.publisherMdpien_US
dc.relation.ispartofSustainabilityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcooling loaden_US
dc.subjectbuildingen_US
dc.subjectpredictive modellingen_US
dc.subjectenergy efficiencyen_US
dc.titlePrediction of Cooling Load of Tropical Buildings with Machine Learningen_US
dc.typearticleen_US
dc.authoridAydin, Yaren/0000-0002-5134-9822
dc.authoridKim, Sanghun/0000-0002-1423-6116
dc.authoridBekdas, Gebrail/0000-0002-7327-9810
dc.authoridIsikdag, Umit/0000-0002-2660-0106
dc.authoridGeem, Zong Woo/0000-0002-0370-5562
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.3390/su15119061
dc.identifier.volume15en_US
dc.identifier.issue11en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ2
dc.identifier.wosWOS:001004871200001
dc.identifier.scopus2-s2.0-85161533751
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster