Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTasabat, Semre Erpolat
dc.contributor.authorAydin, Olgun
dc.date.accessioned2025-01-09T20:08:04Z
dc.date.available2025-01-09T20:08:04Z
dc.date.issued2022
dc.identifier.issn2147-1762
dc.identifier.urihttps://doi.org/10.35378/gujs.937169
dc.identifier.urihttps://hdl.handle.net/20.500.14124/7974
dc.description.abstractPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn't only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural network (DNN) architecture proposed in this study intends to bring a different approach to the predictive maintenance domain. There is an input layer in this architecture, a Long-Short term memory (LSTM) layer, a dropout layer (DO) followed by an LSTM layer, a hidden layer, and an output layer. The number of epochs used in the architecture and the batch size was determined using the Genetic Algorithm (GA). The activation function used after the output layer, DO ratio, and optimization algorithm optimizes loss function determined by using grid search (GS). This approach brings a different perspective to the literature for finding optimum parameters of LSTM. The neural network and hyperparameter optimization approach proposed in this study performs much better than existent studies regarding LSTM network usage for predictive maintenance purposesen_US
dc.language.isoengen_US
dc.publisherGazi Univen_US
dc.relation.ispartofGazi University Journal of Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectGenetic algorithmen_US
dc.subjectArtificial neural networksen_US
dc.subjectPredictive maintenanceen_US
dc.subjectCost efficient maintenanceen_US
dc.titleUsing Long-Short Term Memory Networks with Genetic Algorithm to Predict Engine Conditionen_US
dc.typearticleen_US
dc.authoridAydin, Olgun/0000-0002-7090-0931
dc.authoridErpolat Tasabat, Semra/0000-0001-6845-8278
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.35378/gujs.937169
dc.identifier.volume35en_US
dc.identifier.issue3en_US
dc.identifier.startpage1200en_US
dc.identifier.endpage1210en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A
dc.identifier.wosWOS:000874529700030
dc.identifier.scopus2-s2.0-85138478983
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster