Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorIlter, Damla
dc.contributor.authorKaraahmetoglu, Elif
dc.contributor.authorGundogdu, Ozge
dc.contributor.authorDalar, Ali Zafer
dc.date.accessioned2025-01-09T20:08:12Z
dc.date.available2025-01-09T20:08:12Z
dc.date.issued2014
dc.identifier.isbn978-80-87990-02-5
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8066
dc.description8th International Days of Statistics and Economics -- SEP 11-13, 2014 -- Prague, CZECH REPUBLICen_US
dc.description.abstractForecasting problems play an important role in time series. In recent years, to solve these problems, many good alternative methods like artificial neural networks have been proposed in the literature. Although the most used artificial neural networks type is multilayer perceptron artificial neural networks, multiplicative neuron model artificial neural networks (MNM-ANNs) have been used to obtain forecasts for a few years. Many of previous studies were used to original series without any transformations such as differencing operation, Box-Cox transformations. Although stationary is an important assumption, previous studies have shown that forecasts obtained from ANNs were employed to non-stationary time series. Box-Cox transformations have been often used to time series because of heteroscedasticity. We used particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms to train MNM-ANNs, and investigated differencing effects of original and transformed data which are obtained from Box-Cox transformations. Istanbul stock exchange (IEX) data sets which are made up of five time series for years between 2009 and 2013 are analyzed. The sets have comprised of first five months for these years. The results are interpreted and discussed. It is shown that transformation operations are useful for forecasting IEX as a result of statistical hypothesis tests.en_US
dc.description.sponsorshipUniv Econ, Dept Stat & Probabil & Dept Microecon,Univ Econ, Fac Business Econ,ESC Rennes Int Sch Businessen_US
dc.language.isoengen_US
dc.publisherMelandriumen_US
dc.relation.ispartof8th International Days of Statistics and Economicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectDifference Operatoren_US
dc.subjectBox-Cox Power Transformationsen_US
dc.subjectMultiplicative Neuron Modelen_US
dc.titleAN EXPERIMENTAL STUDY FOR TRANSFORMING AND DIFFERENCING EFFECTS IN MULTIPLICATIVE NEURON MODEL ARTIFICIAL NEURAL NETWORK FOR TIME SERIES FORECASTINGen_US
dc.typeconferenceObjecten_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.startpage598en_US
dc.identifier.endpage607en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A
dc.identifier.wosWOS:000350226700059
dc.indekslendigikaynakWeb of Scienceen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster