Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
IDENTIFYING LEVELS OF OCCUPANCY IN BUILDINGS USING AUTOMATED MACHINE LEARNING
dc.contributor.author | Isikdag, Umit | |
dc.date.accessioned | 2025-01-09T20:08:18Z | |
dc.date.available | 2025-01-09T20:08:18Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1018-4619 | |
dc.identifier.issn | 1610-2304 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/8128 | |
dc.description.abstract | Buildings are the key contributors to energy consumption. Knowledge on the occupancy of indoor spaces plays an important role in the estimation of building's energy use. The indoor occupancy status and levels can be estimated based on information acquired from cameras, energy meters, person trackers and environmental sensors. Some of these methods such as image processing and tracking are causing concerns related to privacy, others require installation of smart devices, such as smart meters. As environmental sensors are embedded in many home appliances, it is easy and cheap to reach this information while ensuring privacy. This study focuses on exploring the accuracy of semi-automated and automated machine learning methods in identifying the levels of occupancy in indoor spaces based on data acquired from environmental sensors. The study involved a data acquisition stage and three stages of machine learning experiments. The results indicate that the automated predictions of occupancy status and levels can be completed with high accuracy using Automated Machine Learning (AutoML) methods. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Parlar Scientific Publications (P S P) | en_US |
dc.relation.ispartof | Fresenius Environmental Bulletin | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | AutoML | en_US |
dc.subject | Indoor | en_US |
dc.subject | Occupancy | en_US |
dc.subject | Estimation | en_US |
dc.subject | Classification | en_US |
dc.subject | Machine Learning | en_US |
dc.title | IDENTIFYING LEVELS OF OCCUPANCY IN BUILDINGS USING AUTOMATED MACHINE LEARNING | en_US |
dc.type | article | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 4A | en_US |
dc.identifier.startpage | 4317 | en_US |
dc.identifier.endpage | 4325 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q4 | |
dc.identifier.wos | WOS:000658172800042 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Ꮃeb of Science [1746]
Web of Science platform