Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHowe, Eylem Deniz
dc.contributor.authorBozdogan, Hamparsum
dc.contributor.authorKiroglu, Gulay
dc.date.accessioned2025-01-09T20:08:25Z
dc.date.available2025-01-09T20:08:25Z
dc.date.issued2012
dc.identifier.issn1307-5543
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8193
dc.description.abstractA common problem in structural equation modeling is that of model selection. Many researchers have addressed this problem, but many methods have provided mixed benefits until recently. Akaike's well-known criteria, AIC, has been applied in the context of structural equation modeling, but the effectiveness of many other information criteria have not been studied in a convincing manner. In this paper, we compare the SEM model selection prowess of several AIC-type and ICOMP-type criteria. We also introduce two new large sample consistent forms of Bozdogan's ICOMP criteria - one of which is robust to model misspecification. To study the empirical performance of the information criteria, we use a well-known SEM simulation protocol, and demonstrate that most of the information-theoretic criteria select the pseudo true model with very high frequencies. We also demonstrate, however, that the performance of AIC is inversely related to the sample size. Finally, we apply the new criteria to select an analytical model for a real dataset from a retail marketing study of consumer behavior. Our results show the versatility of the new proposed method where both the goodness-of fit and the complexity of the model is taken into account in one criterion function.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK); Department of Statistics, Operations, and Management Science at the University of Tennesseeen_US
dc.description.sponsorshipThis research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) for the first author at the Department of Statistics, Operations, and Management Science at the University of Tennessee as a Visiting Scholar under the supervision of Professor Bozdogan. The first author extends her gratitude and thanks to Professor Bozdogan for the hospitality and conducive research atmosphere provided.en_US
dc.language.isoengen_US
dc.publisherNew York Business Global Llcen_US
dc.relation.ispartofEuropean Journal of Pure and Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStructural Equation Modelen_US
dc.subjectInformation Criteriaen_US
dc.subjectAIC-type Criteriaen_US
dc.subjectICOMP-type Criteriaen_US
dc.titlePerformance of Information Complexity Criteria in Structural Equation Models with Applicationsen_US
dc.typearticleen_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.startpage282en_US
dc.identifier.endpage301en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A
dc.identifier.wosWOS:000214934000002
dc.indekslendigikaynakWeb of Scienceen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster