Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Performance of Information Complexity Criteria in Structural Equation Models with Applications
dc.contributor.author | Howe, Eylem Deniz | |
dc.contributor.author | Bozdogan, Hamparsum | |
dc.contributor.author | Kiroglu, Gulay | |
dc.date.accessioned | 2025-01-09T20:08:25Z | |
dc.date.available | 2025-01-09T20:08:25Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1307-5543 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/8193 | |
dc.description.abstract | A common problem in structural equation modeling is that of model selection. Many researchers have addressed this problem, but many methods have provided mixed benefits until recently. Akaike's well-known criteria, AIC, has been applied in the context of structural equation modeling, but the effectiveness of many other information criteria have not been studied in a convincing manner. In this paper, we compare the SEM model selection prowess of several AIC-type and ICOMP-type criteria. We also introduce two new large sample consistent forms of Bozdogan's ICOMP criteria - one of which is robust to model misspecification. To study the empirical performance of the information criteria, we use a well-known SEM simulation protocol, and demonstrate that most of the information-theoretic criteria select the pseudo true model with very high frequencies. We also demonstrate, however, that the performance of AIC is inversely related to the sample size. Finally, we apply the new criteria to select an analytical model for a real dataset from a retail marketing study of consumer behavior. Our results show the versatility of the new proposed method where both the goodness-of fit and the complexity of the model is taken into account in one criterion function. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK); Department of Statistics, Operations, and Management Science at the University of Tennessee | en_US |
dc.description.sponsorship | This research was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) for the first author at the Department of Statistics, Operations, and Management Science at the University of Tennessee as a Visiting Scholar under the supervision of Professor Bozdogan. The first author extends her gratitude and thanks to Professor Bozdogan for the hospitality and conducive research atmosphere provided. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | New York Business Global Llc | en_US |
dc.relation.ispartof | European Journal of Pure and Applied Mathematics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Structural Equation Model | en_US |
dc.subject | Information Criteria | en_US |
dc.subject | AIC-type Criteria | en_US |
dc.subject | ICOMP-type Criteria | en_US |
dc.title | Performance of Information Complexity Criteria in Structural Equation Models with Applications | en_US |
dc.type | article | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.volume | 5 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 282 | en_US |
dc.identifier.endpage | 301 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | |
dc.identifier.wos | WOS:000214934000002 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Ꮃeb of Science [1746]
Web of Science platform