Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSenel, Kerem
dc.contributor.authorOzdinc, Mesut
dc.contributor.authorOzturkcan, Selcen
dc.date.accessioned2025-01-09T20:12:04Z
dc.date.available2025-01-09T20:12:04Z
dc.date.issued2021
dc.identifier.issn1935-7893
dc.identifier.issn1938-744X
dc.identifier.urihttps://doi.org/10.1017/dmp.2020.220
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8327
dc.description.abstractObjective: The susceptible-infected-removed (SIR) model and its variants are widely used to predict the progress of coronavirus disease 2019 (COVID-19) worldwide, despite their rather simplistic nature. Nevertheless, robust estimation of the SIR model presents a significant challenge, particularly with limited and possibly noisy data in the initial phase of the pandemic. Methods: The K-means algorithm is used to perform a cluster analysis of the top 10 countries with the highest number of COVID-19 cases, to observe if there are any significant differences among countries in terms of robustness. Results: As a result of model variation tests, the robustness of parameter estimates is found to be particularly problematic in developing countries. The incompatibility of parameter estimates with the observed characteristics of COVID-19 is another potential problem. Hence, a series of research questions are visited. Conclusions: We propose a Single Parameter Estimation (SPE) approach to circumvent these potential problems if the basic SIR is the model of choice, and we check the robustness of this new approach by model variation and structured permutation tests. Dissemination of quality predictions is critical for policy- and decision-makers in shedding light on the next phases of the pandemic.en_US
dc.language.isoengen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.ispartofDisaster Medicine and Public Health Preparednessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcoronavirusen_US
dc.subjectCOVID-19en_US
dc.subjectepidemic modelsen_US
dc.subjectrobust estimationen_US
dc.subjectSIRen_US
dc.titleSingle Parameter Estimation Approach for Robust Estimation of SIR Model With Limited and Noisy Data: The Case for COVID-19en_US
dc.typearticleen_US
dc.authoridSenel, Ilhan Kerem/0000-0003-4496-5149
dc.authoridOzdinc, Mesut/0000-0002-8836-978X
dc.authoridOzturkcan, Selcen/0000-0003-2248-0802
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1017/dmp.2020.220
dc.identifier.volume15en_US
dc.identifier.issue3en_US
dc.identifier.startpageE8en_US
dc.identifier.endpageE22en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000679033900002
dc.identifier.pmid32580814
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakPubMeden_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster