Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKoshitani, Shigeo
dc.contributor.authorTuvay, Ipek
dc.date.accessioned2025-01-09T20:12:04Z
dc.date.available2025-01-09T20:12:04Z
dc.date.issued2021
dc.identifier.issn0013-0915
dc.identifier.issn1464-3839
dc.identifier.urihttps://doi.org/10.1017/S0013091521000067
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8330
dc.description.abstractWe present a sufficient condition for the kG-Scott module with vertex P to remain indecomposable under the Brauer construction for any subgroup Q of P as k[QC(G)(Q)]-module, where k is a field of characteristic 2, and P is a semidihedral 2-subgroup of a finite group G. This generalizes results for the cases where P is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a p-permutation bimodule (where p is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broue, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.en_US
dc.description.sponsorshipJapan Society for Promotion of Science (JSPS) [19K03416]; Mimar Sinan Fine Arts University Scientific Research Unit [2019-28]; Grants-in-Aid for Scientific Research [19K03416] Funding Source: KAKENen_US
dc.description.sponsorshipThe research of S.K. was supported by the Japan Society for Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (C)19K03416, 2019-2021. The research of I.T. was supported by Mimar Sinan Fine Arts University Scientific Research Unit with project number 2019-28. The authors thank Caroline Lassueur for useful information on [7]. The authors also would like to thank the referee for careful reading and informing us on the shorter proof of Lemma 2.3.en_US
dc.language.isoengen_US
dc.publisherCambridge Univ Pressen_US
dc.relation.ispartofProceedings of The Edinburgh Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBrauer indecomposabilityen_US
dc.subjectScott moduleen_US
dc.subjectBrauer constructionen_US
dc.subjectsemidihedral groupen_US
dc.titleBRAUER INDECOMPOSABILITY OF SCOTT MODULES WITH SEMIDIHEDRAL VERTEXen_US
dc.typearticleen_US
dc.authoridTUVAY, IPEK/0000-0002-7427-9310
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1017/S0013091521000067
dc.identifier.volume64en_US
dc.identifier.issue2en_US
dc.identifier.startpage174en_US
dc.identifier.endpage182en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ2
dc.identifier.wosWOS:000665870700004
dc.identifier.scopus2-s2.0-85105606210
dc.identifier.scopusqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster