Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorPehlivanli, Ayca Cakmak
dc.date.accessioned2025-01-09T20:12:06Z
dc.date.available2025-01-09T20:12:06Z
dc.date.issued2016
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.urihttps://doi.org/10.1080/02664763.2015.1092112
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8381
dc.description.abstractClassification of high-dimensional data set is a big challenge for statistical learning and data mining algorithms. To effectively apply classification methods to high-dimensional data sets, feature selection is an indispensable pre-processing step of learning process. In this study, we consider the problem of constructing an effective feature selection and classification scheme for data set which has a small number of sample size with a large number of features. A novel feature selection approach, named four-Staged Feature Selection, has been proposed to overcome high-dimensional data classification problem by selecting informative features. The proposed method first selects candidate features with number of filtering methods which are based on different metrics, and then it applies semi-wrapper, union and voting stages, respectively, to obtain final feature subsets. Several statistical learning and data mining methods have been carried out to verify the efficiency of the selected features. In order to test the adequacy of the proposed method, 10 different microarray data sets are employed due to their high number of features and small sample size.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmicroarray gene expressionen_US
dc.subjectclassificationen_US
dc.subjectfeature selectionen_US
dc.subjectstatistical learningen_US
dc.subjectstatistical filter methodsen_US
dc.subjectdata miningen_US
dc.subjecthigh-dimensional dataen_US
dc.subject92B20en_US
dc.subject92D20en_US
dc.subject68T05en_US
dc.subject62P10en_US
dc.titleA novel feature selection scheme for high-dimensional data sets: four-Staged Feature Selectionen_US
dc.typearticleen_US
dc.authoridCakmak Pehlivanli, Ayca/0000-0001-9884-6538
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1080/02664763.2015.1092112
dc.identifier.volume43en_US
dc.identifier.issue6en_US
dc.identifier.startpage1140en_US
dc.identifier.endpage1154en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ3
dc.identifier.wosWOS:000371182400011
dc.indekslendigikaynakWeb of Scienceen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster