Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
A novel feature selection scheme for high-dimensional data sets: four-Staged Feature Selection
dc.contributor.author | Pehlivanli, Ayca Cakmak | |
dc.date.accessioned | 2025-01-09T20:12:06Z | |
dc.date.available | 2025-01-09T20:12:06Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0266-4763 | |
dc.identifier.issn | 1360-0532 | |
dc.identifier.uri | https://doi.org/10.1080/02664763.2015.1092112 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/8381 | |
dc.description.abstract | Classification of high-dimensional data set is a big challenge for statistical learning and data mining algorithms. To effectively apply classification methods to high-dimensional data sets, feature selection is an indispensable pre-processing step of learning process. In this study, we consider the problem of constructing an effective feature selection and classification scheme for data set which has a small number of sample size with a large number of features. A novel feature selection approach, named four-Staged Feature Selection, has been proposed to overcome high-dimensional data classification problem by selecting informative features. The proposed method first selects candidate features with number of filtering methods which are based on different metrics, and then it applies semi-wrapper, union and voting stages, respectively, to obtain final feature subsets. Several statistical learning and data mining methods have been carried out to verify the efficiency of the selected features. In order to test the adequacy of the proposed method, 10 different microarray data sets are employed due to their high number of features and small sample size. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.ispartof | Journal of Applied Statistics | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | microarray gene expression | en_US |
dc.subject | classification | en_US |
dc.subject | feature selection | en_US |
dc.subject | statistical learning | en_US |
dc.subject | statistical filter methods | en_US |
dc.subject | data mining | en_US |
dc.subject | high-dimensional data | en_US |
dc.subject | 92B20 | en_US |
dc.subject | 92D20 | en_US |
dc.subject | 68T05 | en_US |
dc.subject | 62P10 | en_US |
dc.title | A novel feature selection scheme for high-dimensional data sets: four-Staged Feature Selection | en_US |
dc.type | article | en_US |
dc.authorid | Cakmak Pehlivanli, Ayca/0000-0001-9884-6538 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1080/02664763.2015.1092112 | |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 1140 | en_US |
dc.identifier.endpage | 1154 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q3 | |
dc.identifier.wos | WOS:000371182400011 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Ꮃeb of Science [1746]
Web of Science platform