Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
A Novel Approach for Estimating Seemingly Unrelated Regressions with High-Order Autoregressive Disturbances
dc.contributor.author | Asikgil, Baris | |
dc.date.accessioned | 2025-01-09T20:12:06Z | |
dc.date.available | 2025-01-09T20:12:06Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0361-0918 | |
dc.identifier.issn | 1532-4141 | |
dc.identifier.uri | https://doi.org/10.1080/03610918.2013.784337 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/8385 | |
dc.description.abstract | A seemingly unrelated regression (SUR) model is defined by a system of linear regression equations in which the disturbances are contemporaneously correlated across equations. However, the disturbances can also be serially correlated in each equation of the system. In these cases, estimating SUR becomes more complicated. Some methods have been considered estimating SUR with low-order autoregressive (AR) disturbances. In this article, SUR with high-order AR disturbances are considered and a tapering approach is examined under this situation. Two modified methods for estimating SUR are obtained by using this approach. A comprehensive Monte Carlo simulation study is performed in order to compare small-sample efficiencies of the modified methods with the others given in the literature. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Communications in Statistics-Simulation and Computation | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Contemporaneous correlation | en_US |
dc.subject | Tapering | en_US |
dc.subject | SUR | en_US |
dc.subject | Linear regression | en_US |
dc.subject | High-order AR disturbances | en_US |
dc.title | A Novel Approach for Estimating Seemingly Unrelated Regressions with High-Order Autoregressive Disturbances | en_US |
dc.type | article | en_US |
dc.authorid | ASIKGIL, BARIS/0000-0002-1408-3797 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1080/03610918.2013.784337 | |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.startpage | 2061 | en_US |
dc.identifier.endpage | 2080 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q4 | |
dc.identifier.wos | WOS:000334723600003 | |
dc.identifier.scopus | 2-s2.0-84899074137 | |
dc.identifier.scopusquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform