Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHowe, Eylem Deniz
dc.contributor.authorNicolis, Orietta
dc.date.accessioned2025-01-09T20:12:06Z
dc.date.available2025-01-09T20:12:06Z
dc.date.issued2015
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.urihttps://doi.org/10.1080/03610918.2013.809101
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8386
dc.description.abstractMany areas of statistical modeling are plagued by the curse of dimensionality, in which there are more variables than observations. This is especially true when developing functional regression models where the independent dataset is some type of spectral decomposition, such as data from near-infrared spectroscopy. While we could develop a very complex model by simply taking enough samples (such that n > p), this could prove impossible or prohibitively expensive. In addition, a regression model developed like this could turn out to be highly inefficient, as spectral data usually exhibit high multicollinearity. In this article, we propose a two-part algorithm for selecting an effective and efficient functional regression model. Our algorithm begins by evaluating a subset of discrete wavelet transformations, allowing for variation in both wavelet and filter number. Next, we perform an intermediate processing step to remove variables with low correlation to the response data. Finally, we use the genetic algorithm to perform a stochastic search through the subset regression model space, driven by an information-theoretic objective function. We allow our algorithm to develop the regression model for each response variable independently, so as to optimally model each variable. We demonstrate our method on the familiar biscuit dough dataset, which has been used in a similar context by several researchers. Our results demonstrate both the flexibility and the power of our algorithm. For each response variable, a different subset model is selected, and different wavelet transformations are used. The models developed by our algorithm show an improvement, as measured by lower mean error, over results in the published literature.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK); Department of IIMM, University of Bergamoen_US
dc.description.sponsorshipThe research of the first author was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) while the second author was supported by the Department of IIMM, University of Bergamo.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFunctional regressionen_US
dc.subjectGenetic algorithmen_US
dc.subjectWavelet domainen_US
dc.subject46N30en_US
dc.subject65T60en_US
dc.subject65Y10en_US
dc.subject32A70en_US
dc.titleGenetic Algorithm in theWavelet Domain for Large p Small n Regressionen_US
dc.typearticleen_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1080/03610918.2013.809101
dc.identifier.volume44en_US
dc.identifier.issue5en_US
dc.identifier.startpage1144en_US
dc.identifier.endpage1157en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ4
dc.identifier.wosWOS:000343647300003
dc.identifier.scopus2-s2.0-84908611433
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster