Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Genetic Algorithm in theWavelet Domain for Large p Small n Regression
dc.contributor.author | Howe, Eylem Deniz | |
dc.contributor.author | Nicolis, Orietta | |
dc.date.accessioned | 2025-01-09T20:12:06Z | |
dc.date.available | 2025-01-09T20:12:06Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0361-0918 | |
dc.identifier.issn | 1532-4141 | |
dc.identifier.uri | https://doi.org/10.1080/03610918.2013.809101 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/8386 | |
dc.description.abstract | Many areas of statistical modeling are plagued by the curse of dimensionality, in which there are more variables than observations. This is especially true when developing functional regression models where the independent dataset is some type of spectral decomposition, such as data from near-infrared spectroscopy. While we could develop a very complex model by simply taking enough samples (such that n > p), this could prove impossible or prohibitively expensive. In addition, a regression model developed like this could turn out to be highly inefficient, as spectral data usually exhibit high multicollinearity. In this article, we propose a two-part algorithm for selecting an effective and efficient functional regression model. Our algorithm begins by evaluating a subset of discrete wavelet transformations, allowing for variation in both wavelet and filter number. Next, we perform an intermediate processing step to remove variables with low correlation to the response data. Finally, we use the genetic algorithm to perform a stochastic search through the subset regression model space, driven by an information-theoretic objective function. We allow our algorithm to develop the regression model for each response variable independently, so as to optimally model each variable. We demonstrate our method on the familiar biscuit dough dataset, which has been used in a similar context by several researchers. Our results demonstrate both the flexibility and the power of our algorithm. For each response variable, a different subset model is selected, and different wavelet transformations are used. The models developed by our algorithm show an improvement, as measured by lower mean error, over results in the published literature. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK); Department of IIMM, University of Bergamo | en_US |
dc.description.sponsorship | The research of the first author was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) while the second author was supported by the Department of IIMM, University of Bergamo. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Communications in Statistics-Simulation and Computation | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Functional regression | en_US |
dc.subject | Genetic algorithm | en_US |
dc.subject | Wavelet domain | en_US |
dc.subject | 46N30 | en_US |
dc.subject | 65T60 | en_US |
dc.subject | 65Y10 | en_US |
dc.subject | 32A70 | en_US |
dc.title | Genetic Algorithm in theWavelet Domain for Large p Small n Regression | en_US |
dc.type | article | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1080/03610918.2013.809101 | |
dc.identifier.volume | 44 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 1144 | en_US |
dc.identifier.endpage | 1157 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q4 | |
dc.identifier.wos | WOS:000343647300003 | |
dc.identifier.scopus | 2-s2.0-84908611433 | |
dc.identifier.scopusquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1748]
Web of Science platform