Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorErkoc, Ali
dc.contributor.authorErar, M. Aydin
dc.date.accessioned2025-01-09T20:12:06Z
dc.date.available2025-01-09T20:12:06Z
dc.date.issued2023
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.urihttps://doi.org/10.1080/03610918.2021.1891434
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8387
dc.description.abstractBy modeling the obtained data, the estimation of the next step gains importance, specifically in applied basic sciences, such as physics, chemistry, engineering, medicine and space sciences. Although these data sets can be modeled by using linear models, the generated models are often specified by nonlinear functions, since they are derived from solving the systems of differential equations. For instance, the orbit of a spacecraft or a celestial body is generally determined by nonlinear regression models. Therefore, reliable estimation of the parameters is important for the accurate estimation of the orbit. In regression analysis, the multicollinearity leads to unstable and imprecise estimation of the model parameters. This causes the parameter estimates to be misinterpreted. In this study, a new approach to parameter estimation is presented in the case of multicollinearity in nonlinear regression models. The validity of the proposed approach was tested with the simulation study. Thus, a predictive method to have more stable and reliable parameter estimates in nonlinear regression models that are used in various fields of science is gained to the literature.en_US
dc.description.sponsorshipScientific Research Projects Unit of Mimar Sinan Fine Arts University [2014-27]en_US
dc.description.sponsorshipDr. Ali ERKOC was supported by Scientific Research Projects Unit of Mimar Sinan Fine Arts University [Project number 2014-27].en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulticollinearityen_US
dc.subjectNonlinear regressionen_US
dc.subjectJacobian matrixen_US
dc.subjectPrior informationen_US
dc.subjectIterative estimationen_US
dc.titleA new parameter estimation technique using prior information of parameters in nonlinear model with multicollinear dataen_US
dc.typearticleen_US
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1080/03610918.2021.1891434
dc.identifier.volume52en_US
dc.identifier.issue5en_US
dc.identifier.startpage1926en_US
dc.identifier.endpage1936en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ3
dc.identifier.wosWOS:000626989900001
dc.identifier.scopus2-s2.0-85102255087
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster