Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
A new Liu-type estimator for the gamma regression model
dc.contributor.author | Ertan, Esra | |
dc.contributor.author | Erkoc, Ali | |
dc.contributor.author | Akay, Kadri Ulas | |
dc.date.accessioned | 2025-01-09T20:12:07Z | |
dc.date.available | 2025-01-09T20:12:07Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 0361-0918 | |
dc.identifier.issn | 1532-4141 | |
dc.identifier.uri | https://doi.org/10.1080/03610918.2023.2220999 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/8389 | |
dc.description.abstract | In many real-world problems, there are situations where the dependent variable may have a Gamma distribution. The Gamma Regression Models (GRMs) are preferred when the response variable assumes a Gamma distribution with a given set of independent variables. The Maximum Likelihood Estimator (MLE) is used to estimate the unknown parameters. In the presence of multicollinearity, the variance of the MLE becomes inflated and the inference based on the MLE may not be reasonable. In this article, we propose a new biased estimator called the new Liu-type estimator in the GRMs to combat multicollinearity. The proposed estimator is a general estimator which includes other biased estimators, such as the Gamma ridge estimator, Gamma Liu estimator, and the estimators with two biasing parameters as special cases. Furthermore, several methods are proposed to determine the biasing parameters in the estimators. Also, a Monte Carlo simulation study has been conducted to assess the performance of the proposed biased estimator where the Estimated Mean Squared Error (EMSE) is considered as a performance criterion. Finally, two numerical examples are given to investigate the performance of the proposed estimator over existing estimators. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Inc | en_US |
dc.relation.ispartof | Communications in Statistics-Simulation and Computation | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Gamma regression models | en_US |
dc.subject | Liu estimator | en_US |
dc.subject | Mean squared error | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Ridge estimator | en_US |
dc.title | A new Liu-type estimator for the gamma regression model | en_US |
dc.type | article | en_US |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1080/03610918.2023.2220999 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q3 | |
dc.identifier.wos | WOS:001003240100001 | |
dc.identifier.scopus | 2-s2.0-85161666575 | |
dc.identifier.scopusquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform