Abstract
PurposePositive effect of knowledge sharing (KS) on innovation has come to the fore and government-supported innovation and mentoring communities or mentor networks have become widespread. This article aims to examine the community connectedness and mentors' preferences for professional competency-based KS of such innovation community of practice networks (CoPNs).Design/methodology/approachThe paper constructs a directed weighted CoPN model with a node-attribute-based novel fingerprint edge weights. Based on the CoPN, Social Network Analysis (SNA) metrics and measures including Giant Component (GC) were proposed and analyzed to identify mentors' connectedness preferences. The fingerprint was proposed as a novel binarized node attribute of competence. Jaccard similarity of fingerprints was proposed as edge weights to reveal correlations between competences and preferences for KS.FindingsThe work opted to conduct a survey of 28 innovation mentors to measure a CoPN. Both a name generator question and a second set of questions were employed to invite respondents to name their collaborators and indicate their professional competence. SNA metrics result in differing values for GC and the rest, which lead us to focus on GC to reveal salient metrics of connectedness. Jaccard similarity analysis results on GC demonstrate that mentors collaborate in an interdisciplinary manner.Originality/valueBased on the CoPN, the methods proposed may be effective in predicting preferred relationships for interdisciplinary collaborations, providing the managers with an analytical decision support tool for KS in practice.