Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorIlter, Damla
dc.contributor.authorDeniz, Eylem
dc.contributor.authorKocadagli, Ozan
dc.date.accessioned2025-01-09T20:14:06Z
dc.date.available2025-01-09T20:14:06Z
dc.date.issued2021
dc.identifier.issn1524-1904
dc.identifier.issn1526-4025
dc.identifier.urihttps://doi.org/10.1002/asmb.2614
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8721
dc.description.abstractThe credit scoring is a statistical analysis performed by financial institutions to represent the creditworthiness of an individual or small and medium-sized enterprise. A credit score is a numerical quantity that can be qualified by a rating label showing the potential risk. In order to determine which customers are likely to bring in the most revenue at the exact interest rate and credit limits, the lenders take into accounts these credit scores. In this context, the robust statistical models are inevitable to reduce the number of wrong decisions in the credit evaluation process. Although the machine learning approaches provide superior performance to conventional statistical methods, they are mostly criticized due to the selection of model structure, model complexity, tuning parameters, time consumption in the high-dimensional and excessive nonlinear cases. For this reason, this study introduces an efficient model estimation and feature selection procedure for artificial neural network (ANN) classifiers in the context of credit scoring. Essentially, this procedure hybridizes training of ANNs with a novel feature selection approach based on genetic algorithms and information complexity criterion. In the application, the proposed procedure was performed on a couple of benchmark credit scoring datasets. According to analysis results, the proposed approach not only estimates robust models from ANNs in terms of model complexity, feature selection, and time consumption, but also outperforms the traditional training procedure for the classification accuracies, false positive, and false negative errors overtraining and test datasets.en_US
dc.description.sponsorshipMimar Sinan Fine Arts University [2018-31]en_US
dc.description.sponsorshipThis study was supported by Mimar Sinan Fine Arts University within the scope of Scientific Research Project (Grant: 2018-31).en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofApplied Stochastic Models in Business and Industryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networksen_US
dc.subjectcredit scoringen_US
dc.subjectfeature selectionen_US
dc.subjectgenetic algorithmsen_US
dc.subjectICOMPen_US
dc.subjectinformation complexityen_US
dc.titleHybridized artificial neural network classifiers with a novel feature selection procedure based genetic algorithms and information complexity in credit scoringen_US
dc.typearticleen_US
dc.authoridkocadagli, ozan/0000-0003-4354-7383
dc.authoridILTER FAKHOURI, DAMLA/0000-0002-9844-4616
dc.authoridDeniz, Eylem/0000-0001-8865-2086
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1002/asmb.2614
dc.identifier.volume37en_US
dc.identifier.issue2en_US
dc.identifier.startpage203en_US
dc.identifier.endpage228en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ3
dc.identifier.wosWOS:000634453500001
dc.identifier.scopus2-s2.0-85103258922
dc.identifier.scopusqualityQ3
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster