Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSaricam, Semanur
dc.contributor.authorBeyaztas, Ufuk
dc.contributor.authorAsikgil, Baris
dc.contributor.authorShang, Han Lin
dc.date.accessioned2025-01-09T20:14:06Z
dc.date.available2025-01-09T20:14:06Z
dc.date.issued2022
dc.identifier.issn0886-9383
dc.identifier.issn1099-128X
dc.identifier.urihttps://doi.org/10.1002/cem.3452
dc.identifier.urihttps://hdl.handle.net/20.500.14124/8722
dc.description.abstractScalar-on-function regression, where the response is scalar valued and the predictor consists of random functions, is one of the most important tools for exploring the functional relationship between a scalar response and functional predictor(s). The functional partial least-squares method improves estimation accuracy for estimating the regression coefficient function compared to other existing methods, such as least squares, maximum likelihood, and maximum penalized likelihood. The functional partial least-squares method is often based on the SIMPLS or NIPALS algorithm, but these algorithms can be computationally slow for analyzing a large dataset. In this study, we propose two modified functional partial least-squares methods to efficiently estimate the regression coefficient function under the scalar-on-function regression. In the proposed methods, the infinite-dimensional functional predictors are first projected onto a finite-dimensional space using a basis expansion method. Then, two partial least-squares algorithms, based on re-orthogonalization of the score and loading vectors, are used to estimate the linear relationship between scalar response and the basis coefficients of the functional predictors. The finite-sample performance and computing speed are evaluated using a series of Monte Carlo simulation studies and a sugar process dataset.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [120F270]en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK), Grant/Award Number: 120F270en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofJournal of Chemometricsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBidiag1en_US
dc.subjectBidiag2en_US
dc.subjectbidiagonalizationen_US
dc.subjectNIPALSen_US
dc.subjectSIMPLSen_US
dc.titleOn partial least-squares estimation in scalar-on-function regression modelsen_US
dc.typearticleen_US
dc.authoridShang, Han Lin/0000-0003-1769-6430
dc.authoridASIKGIL, BARIS/0000-0002-1408-3797
dc.authoridBeyaztas, Ufuk/0000-0002-5208-4950
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1002/cem.3452
dc.identifier.volume36en_US
dc.identifier.issue12en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000866277400001
dc.identifier.scopus2-s2.0-85139632997
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster