Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBozkaya, A. Gonca
dc.contributor.authorBalcik, Filiz Bektas
dc.contributor.authorGoksel, Cigdem
dc.contributor.authorEsbah, Hayriye
dc.date.accessioned2025-01-09T20:14:25Z
dc.date.available2025-01-09T20:14:25Z
dc.date.issued2015
dc.identifier.issn0167-6369
dc.identifier.issn1573-2959
dc.identifier.urihttps://doi.org/10.1007/s10661-015-4322-z
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9045
dc.description.abstractHuman activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.en_US
dc.description.sponsorshipEU [226740]; TUBITAK (The Scientific and Technological Research Council of Turkey) [110Y015]en_US
dc.description.sponsorshipThis study was conducted within the EnviroGRIDS Project, which is an EU Funded 7th Framework Program Project under Grant Agreement 226740 (Building Capacity for a Black Sea Catchment Observation and Assessment System Supporting Sustainable Development) and TUBITAK (The Scientific and Technological Research Council of Turkey) funded project (No 110Y015), Monitoring of urban development in Igneada Protection Area and modelling for future. Finally, we would like to thank the anonymous reviewers and the editors for their constructive comments that improved the quality of this paper.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofEnvironmental Monitoring and Assessmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLand use/land coveren_US
dc.subjectRemote sensingen_US
dc.subjectImage processingen_US
dc.subjectIgneadaen_US
dc.subjectStochastic Markov modelen_US
dc.subjectCellular automata Markov modelen_US
dc.titleForecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkeyen_US
dc.typearticleen_US
dc.authoridGOKSEL, Cigdem/0000-0001-8480-1435
dc.authoridBektas Balcik, Filiz/0000-0003-3039-6846
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1007/s10661-015-4322-z
dc.identifier.volume187en_US
dc.identifier.issue3en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ3
dc.identifier.wosWOS:000349434900004
dc.identifier.scopus2-s2.0-84963955524
dc.identifier.pmid25647805
dc.identifier.scopusqualityQ2
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster