Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
Bolstering stochastic gradient descent with model building
dc.contributor.author | Birbil, S. Ilker | |
dc.contributor.author | Martin, Ozgur | |
dc.contributor.author | Onay, Gonenc | |
dc.contributor.author | Oztoprak, Figen | |
dc.date.accessioned | 2025-01-09T20:14:25Z | |
dc.date.available | 2025-01-09T20:14:25Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 1134-5764 | |
dc.identifier.issn | 1863-8279 | |
dc.identifier.uri | https://doi.org/10.1007/s11750-024-00673-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/9052 | |
dc.description.abstract | Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Top | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Model building | en_US |
dc.subject | Second-order information | en_US |
dc.subject | Stochastic gradient descent | en_US |
dc.subject | Convergence analysis | en_US |
dc.title | Bolstering stochastic gradient descent with model building | en_US |
dc.type | article | en_US |
dc.authorid | Birbil, Ilker/0000-0001-7472-7032 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1007/s11750-024-00673-z | |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 517 | en_US |
dc.identifier.endpage | 536 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | |
dc.identifier.wos | WOS:001204675600001 | |
dc.identifier.scopus | 2-s2.0-85190403717 | |
dc.identifier.scopusquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1543]
Scopus | Abstract and citation database -
Ꮃeb of Science [1746]
Web of Science platform