Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAsikgil, Baris
dc.contributor.authorErar, Aydin
dc.date.accessioned2025-01-09T20:14:26Z
dc.date.available2025-01-09T20:14:26Z
dc.date.issued2013
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.urihttps://doi.org/10.1016/j.amc.2013.03.088
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9062
dc.description.abstractNonlinear models play an important role in various scientific disciplines and engineering. The parameter estimation of these models should be efficient to make better decisions. Ordinary least squares (OLS) method is used for estimating the parameters of nonlinear regression models when all regression assumptions are satisfied. If there is a problem with these assumptions, OLS fails to give efficient results. This paper examines the efficiency of parameter estimation under the problem of autocorrelated errors. Some methods have been proposed in order to overcome the problem and obtain efficient parameter estimates especially for autoregressive (AR) processes. One of the most commonly used method is two-stage least squares (2SLS). This method is based on generalized least squares. In this paper, a novel approach is proposed for 2SLS method by evaluating a polynomial tapering procedure on autocorrelated errors. This new method is called tapered two-stage least squares (T2SLS). The finite sample properties and improvements of T2SLS are explored by means of some real life examples and a Monte Carlo simulation study. Both numerical and experimental results reveal that T2SLS can give more efficient parameter estimates especially in small samples under the autocorrelation problem when compared to OLS and 2SLS. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlinear regressionen_US
dc.subjectAutocorrelationen_US
dc.subjectAutoregressive processen_US
dc.subjectTwo-stage least squaresen_US
dc.subjectPolynomial taperen_US
dc.titlePolynomial tapered two-stage least squares method in nonlinear regressionen_US
dc.typearticleen_US
dc.authoridASIKGIL, BARIS/0000-0002-1408-3797
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.amc.2013.03.088
dc.identifier.volume219en_US
dc.identifier.issue18en_US
dc.identifier.startpage9743en_US
dc.identifier.endpage9754en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000318971800013
dc.identifier.scopus2-s2.0-84893706307
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster