Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi
Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.MSGSÜ'de Ara
A novel hybrid learning algorithm for full Bayesian approach of artificial neural networks
dc.contributor.author | Kocadagli, Ozan | |
dc.date.accessioned | 2025-01-09T20:14:27Z | |
dc.date.available | 2025-01-09T20:14:27Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.issn | 1872-9681 | |
dc.identifier.uri | https://doi.org/10.1016/j.asoc.2015.06.003 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14124/9071 | |
dc.description.abstract | The Bayesian neural networks are useful tools to estimate the functional structure in the nonlinear systems. However, they suffer from some complicated problems such as controlling the model complexity, the training time, the efficient parameter estimation, the random walk, and the stuck in the local optima in the high-dimensional parameter cases. In this paper, to alleviate these mentioned problems, a novel hybrid Bayesian learning procedure is proposed. This approach is based on the full Bayesian learning, and integrates Markov chain Monte Carlo procedures with genetic algorithms and the fuzzy membership functions. In the application sections, to examine the performance of proposed approach, nonlinear time series and regression analysis are handled separately, and it is compared with the traditional training techniques in terms of their estimation and prediction abilities. (C) 2015 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
dc.description.sponsorship | Most of this work was completed when the author visited the Institute for Integrating Statistics in Decision Sciences at George Washington University, USA. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | Applied Soft Computing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bayesian neural networks | en_US |
dc.subject | Bayesian learning | en_US |
dc.subject | Hierarchical Bayesian models | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Markov chain Monte Carlo | en_US |
dc.subject | Hybrid Monte Carlo | en_US |
dc.title | A novel hybrid learning algorithm for full Bayesian approach of artificial neural networks | en_US |
dc.type | article | en_US |
dc.authorid | kocadagli, ozan/0000-0003-4354-7383 | |
dc.department | Mimar Sinan Güzel Sanatlar Üniversitesi | en_US |
dc.identifier.doi | 10.1016/j.asoc.2015.06.003 | |
dc.identifier.volume | 35 | en_US |
dc.identifier.startpage | 52 | en_US |
dc.identifier.endpage | 65 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | Q1 | |
dc.identifier.wos | WOS:000360109900005 | |
dc.identifier.scopus | 2-s2.0-84934784313 | |
dc.identifier.scopusquality | Q1 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.snmz | KA_20250105 |
Bu öğenin dosyaları:
Dosyalar | Boyut | Biçim | Göster |
---|---|---|---|
Bu öğe ile ilişkili dosya yok. |
Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.
-
Տcopus [1544]
Scopus | Abstract and citation database -
Ꮃeb of Science [1747]
Web of Science platform