Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaya, Irem Ersoez
dc.contributor.authorPehlivanli, Ayca Cakmak
dc.contributor.authorSekizkardes, Emine Gezmez
dc.contributor.authorIbrikci, Turgay
dc.date.accessioned2025-01-09T20:14:28Z
dc.date.available2025-01-09T20:14:28Z
dc.date.issued2017
dc.identifier.issn0169-2607
dc.identifier.issn1872-7565
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2016.11.011
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9080
dc.description.abstractBackground and objective: Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low -dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Methods: Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 x 256, 128 x 128 and 64 x 64, were included in the study to examine their effect on the methods. Results: The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. Conclusion: According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of Tlw MRI images. (C) 2016 Elsevier Ireland Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Ireland Ltden_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDimension reductionen_US
dc.subjectPCA algorithmsen_US
dc.subjectClusteringen_US
dc.subjectk-meansen_US
dc.subjectFuzzy C-Meansen_US
dc.titlePCA based clustering for brain tumor segmentation of T1w MRI imagesen_US
dc.typearticleen_US
dc.authoridIBRIKCI, Turgay/0000-0003-1321-2523
dc.authoridCakmak Pehlivanli, Ayca/0000-0001-9884-6538
dc.authoridErsoz Kaya, Irem/0000-0001-5553-3881
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.cmpb.2016.11.011
dc.identifier.volume140en_US
dc.identifier.startpage19en_US
dc.identifier.endpage28en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:000397074300004
dc.identifier.scopus2-s2.0-85000470525
dc.identifier.pmid28254075
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster