Mimar Sinan Güzel Sanatlar Üniversitesi Açık Bilim, Sanat Arşivi

Açık Bilim, Sanat Arşivi, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve yayınların etkisini artırmak için telif haklarına uygun olarak Açık Erişime sunar.

MSGSÜ'de Ara
Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorInan, Neslihan Gokmen
dc.contributor.authorKocadagli, Ozan
dc.contributor.authorYildirim, Duzgun
dc.contributor.authorMese, Ismail
dc.contributor.authorKovan, Ozge
dc.date.accessioned2025-01-09T20:14:28Z
dc.date.available2025-01-09T20:14:28Z
dc.date.issued2024
dc.identifier.issn0169-2607
dc.identifier.issn1872-7565
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2023.107921
dc.identifier.urihttps://hdl.handle.net/20.500.14124/9081
dc.description.abstractBackground and objectives: Early detection and diagnosis of thyroid nodule types are important because they can be treated more effectively in their early stages. The types of thyroid nodules are generally stated as atypia of undetermined significance/follicular lesion of undetermined significance (AUS/FLUS), benign follicular, and papillary follicular. The risk of malignancy for AUS/FLUS is typically stated to be between 5 and 15 %, while some studies indicate a risk as high as 25 %. Without complete histology, it is difficult to classify nodules and these diagnostic operations are pricey and risky. To minimize laborious workload and misdiagnosis, recently various AI-based decision support systems have been developed.Methods: In this study, a novel AI-based decision support system has been developed for the automated segmentation and classification of the types of thyroid nodules. This system is based on a hybrid deep-learning procedure that makes both an automatic thyroid nodule segmentation and classification tasks, respectively. In this framework, the segmentation is executed with some U-Net architectures such as ResUNet and ResUNet++ integrating with the feature extraction and upsampling with dropout operations to prevent overfitting. The nodule classification task is achieved by various deep nets architecture such as VGG-16, DenseNet121, ResNet50, and Inception ResNet-v2 considering some accurate classification criteria such as Intersection over Union (IOU), Dice coefficient, accuracy, precision, and recall.Results: In analysis, a total of 880 patients with ages ranging from 10 to 90 years were included by taking the ultrasound images and demographics. The experimental evaluations showed that ResUNet++ demonstrated excellent segmentation outcomes, attaining remarkable evaluation scores including a dice coefficient of 92.4 % and a mean IOU of 89.7 %. ResNet-50 and Inception ResNet-v2 trained over the images segmented with UNets have shown better performance in terms of achieving high evaluation scores for the classification accuracy such as 96.6 % and 95.0 %, respectively. In addition, ResNet-50 and Inception ResNet-v2 classified AUS/FLUS from the images segmented with UNets with AUC=97.0 % and 96.0 %, respectively.Conclusions: The proposed AI-based decision support system improves the automatic segmentation performance of AUS/FLUS and it has shown better performance than available approaches in the literature with respect to ACC, Jaccard and DICE losses. This system has great potential for clinical use by both radiologists and surgeons as well.en_US
dc.language.isoengen_US
dc.publisherElsevier Ireland Ltden_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectThyroid nodule segmentationen_US
dc.subjectThyroid nodule classificationen_US
dc.subjectDeep learningen_US
dc.subjectAUS/FLUSen_US
dc.subjectUNetsen_US
dc.subjectResNetsen_US
dc.titleMulti-class classification of thyroid nodules from automatic segmented ultrasound images: Hybrid ResNet based UNet convolutional neural network approachen_US
dc.typearticleen_US
dc.authoridMese, Ismail/0000-0002-4429-6996
dc.authoridYildirim, Duzgun/0000-0002-5411-229X
dc.authoridkocadagli, ozan/0000-0003-4354-7383
dc.departmentMimar Sinan Güzel Sanatlar Üniversitesien_US
dc.identifier.doi10.1016/j.cmpb.2023.107921
dc.identifier.volume243en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ1
dc.identifier.wosWOS:001114879900001
dc.identifier.scopus2-s2.0-85176277793
dc.identifier.pmid37950926
dc.identifier.scopusqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.snmzKA_20250105


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster